Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

43 results about "Filter impulse response" patented technology

System and method for multiple signal carrier time domain channel estimation

The present invention provides a method of characterizing a frequency response of a transmission channel between a transceiver and a subscriber unit. The method includes once per predetermined interval of time, the transceiver transmitting a signal including multiple carriers, a plurality of the carriers including training symbols, a plurality of the carriers including information symbols. The subscriber unit generates frequency response estimates at the frequencies of the carriers including training symbols, each interval of time. The frequency response estimates are converted into a time domain response generating an impulse response once per interval of time. The impulse responses are filtered over a plurality of intervals of time. A channel profile is determined from the filtered impulse responses. The channel profile is converted to the frequency domain generating a channel interpolator. The characterized frequency response is generated from the channel interpolator and the frequency response estimates. The filtering can include averaging the impulse responses over a plurality of intervals of time, accumulating the impulse responses over a plurality of intervals of time, or weighted averaging of the impulse responses over a plurality of intervals of time. The weighted averaging can be dependent upon a phase error between the impulse responses, and/or an amplitude error between the impulse responses.
Owner:INTEL CORP

Receiver

A receiver is operable to detect a synchronisation position for recovering data from a set of received signal samples. The receiver comprises a filter having an impulse response matched to a predetermined characteristic of the received signal and is operable to produce an output signal which is representative of the convolution of the impulse response and the received signal samples. The receiver includes a synchronisation detector operable to detect the synchronisation position from the filter output signal, and a data detector operable to detect and recover data from the set of received signal samples from the synchronisation position provided by the synchronisation detector. The synchronisation detector is operable to represent each of the received signal samples as a positive or negative constant in dependence upon the relative sign of the signal sample, and to represent the samples of the filter impulse response as a positive or negative constant in dependence upon the relative sign of the impulse response samples, and the filter is operable to convolve the impulse response with the received signal samples by logically combining the representation of the received signal samples and the impulse response to produce the output signal. The receiver is therefore provided with a facility for detecting a synchronisation position from an output of the filter matched to a characteristic of the received signal.The output signal of the matched filter is formed by logically combining the filter impulse response and the received signal samples to form a representation of a convolution but with a substantially reduced number of computations.
Owner:SONY UK LTD

Receiver

A receiver is operable to detect a synchronisation position for recovering data from a set of received signal samples. The receiver comprises a filter having an impulse response matched to a predetermined characteristic of the received signal and is operable to produce an output signal which is representative of the convolution of the impulse response and the received signal samples. The receiver includes a synchronisation detector operable to detect the synchronisation position from the filter output signal, and a data detector operable to detect and recover data from the set of received signal samples from the synchronisation position provided by the synchronisation detector. The synchronisation detector is operable to represent each of the received signal samples as a positive or negative constant in dependence upon the relative sign of the signal sample, and to represent the samples of the filter impulse response as a positive or negative constant in dependence upon the relative sign of the impulse response samples, and the filter is operable to convolve the impulse response with the received signal samples by logically combining the representation of the received signal samples and the impulse response to produce the output signal. The receiver is therefore provided with a facility for detecting a synchronisation position from an output of the filter matched to a characteristic of the received signal. The output signal of the matched filter is formed by logically combining the filter impulse response and the received signal samples to form a representation of a convolution but with a substantially reduced number of computations.
Owner:SONY UK LTD

Method of link adaptation in enhanced cellular systems to discriminate between high and low variability

Method to perform link adaptation at the radio interfaces of an enhanced packet data cellular network handling several Modulation and Coding Schemes (MCS) for maximizing data throughput. In a preliminary off-line step the system behaviour, in terms of net throughput of the various available MCSs, is simulated for different C / l conditions. From the simulation two sets of tables are obtained, each table including upgrade and downgrade thresholds expressed in terms of Block Error Rate (BLER). Thresholds correspond to switching points from an MCs to the two available MCSs having the immediate less or more protection. The two sets of tables are referred to higher or lower diversity RF environments and are further specialized for taking into account EGPRS type II hybrid ARQ, namely Incremental Redundancy (IR). During transmission the transmitted blocks are checked for FEC and the results are sent to the network. The network continuously updates BLER using exponential smoothing. In order to achieve the correct time response, in spite of that RLC blocks can be received or not, a reliability filter is provided whose output is used to decide the weight between the new and old measurements to make the BLER filter impulse response exponentially decreasing with time. The IR efficiency is tested for each incoming block and an indicative variable IR status is filtered using the same approach used for BLER. Each actual threshold of BLER to be used in link adaptation is obtained by a linear interpolation between the tabulated threshold without IR and with perfect IR, both weighed with filtered IR status. Filtered BLER is then compared with said interpolated thresholds for testing the incoming of a MCS switching condition. Power control pursues the goal of maintaining constant QoS peak throughput per time slot(Fig 16).
Owner:SIEMENS INFORMATION & COMM NEWTWORKS INC

System and method for multiple signal carrier time domain channel estimation

The present invention provides a method of characterizing a frequency response of a transmission channel between a transceiver and a subscriber unit. The method includes once per predetermined interval of time, the transceiver transmitting a signal including multiple carriers, a plurality of the carriers including training symbols, a plurality of the carriers including information symbols. The subscriber unit generates frequency response estimates at the frequencies of the carriers including training symbols, each interval of time. The frequency response estimates are converted into a time domain response generating an impulse response once per interval of time. The impulse responses are filtered over a plurality of intervals of time. A channel profile is determined from the filtered impulse responses. The channel profile is converted to the frequency domain generating a channel interpolator. The characterized frequency response is generated from the channel interpolator and the frequency response estimates. The filtering can include averaging the impulse responses over a plurality of intervals of time, accumulating the impulse responses over a plurality of intervals of time, or weighted averaging of the impulse responses over a plurality of intervals of time. The weighted averaging can be dependent upon a phase error between the impulse responses, and / or an amplitude error between the impulse responses.
Owner:INTEL CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products