Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

208 results about "Sample rate conversion" patented technology

Sample-rate conversion is the process of changing the sampling rate of a discrete signal to obtain a new discrete representation of the underlying continuous signal. Application areas include image scaling and audio/visual systems, where different sampling rates may be used for engineering, economic, or historical reasons.

Communication system and method for sample rate converting data onto or from a network using a high speed frequency comparison technique

A communication system, source and destination ports of the communication system, and methodology is provided for transporting data in one of possibly three different ways. Data is transported across the network at a frame sample rate that can be the same as or different from the sample rate or master clock within the source port or the destination port. If the sample rate of the source port is known, the sample rate of the destination port can be created using a PLL within the destination port and simply employing a phase comparator in the source port. The phase comparator forwards the phase or frequency difference of the network transfer rate and the source sample rate to the destination port, which then generates a local clock equivalent to the source which then compiles audio data being played at the same rate in which it was sampled at the source. Where economically feasible, sample rate conversion can be used at the source. However, sample rate conversion at the destination is preferred if the source sample rate is forwarded across the network relative to the frame transfer rate of the synchronous network. The sample rate converter simply produces a play rate from the transmitted information at the destination. Again, however, sample rate conversion compares relative phase difference changes similar to the phase difference compared in the digital PLL mode. As a further alternative, sample rates within the source and destination ports can be derived from the network frame rate using fractional dividers in the source and destination ports.
Owner:STANDRD MICROSYSTEMS CORPORATION

Ultra-high bandwidth multi-port memory system for image scaling applications

The image scaling memory system of the present invention eliminates the use of internal or external line memories by using an existing frame memory coupled with an input buffer and a plurality of output buffers for providing a vertical scalar with simultaneous parallel access to multiple lines of data. Additionally, the image scaling memory system of the present invention, including the frame memory, is embedded into an integrated circuit. Thus, the image scaling circuit of the present invention improves reliability, lowers cost, and improves silicon area usage. The frame memory is coupled to an input buffer at an input side and a plurality of output buffers at an output side. The plurality of output buffers is positioned between the frame memory and the vertical scalar. Each output buffer sequentially gains access to and transfers portions of image lines from the frame buffer. Each output buffer stores only a portion of an image line resulting in relatively small output buffers. The plurality of output buffers provides the vertical scalar with simultaneous parallel access to multiple lines of buffered digital image data. The frame memory preferably comprises DRAM that stores the image data such that row faults are minimized. The DRAM frame memory preferably includes at least two memory banks, each including a plurality of rows and a plurality of columns. The DRAM frame memory has multiple purposes including storing digital image data frames for sample rate conversion, as well as, storing bitmaps for access by an On Screen Display controller and storing microprocessor data for access by a microprocessor.
Owner:PIXELWORKS

Wide-band multi-format audio/video production system with frame-rate conversion

A multi-format digital video production system enables a user to process an input video program to produce an output version of the program in a final format which may have a different frame rate, pixel dimensions, or both. An internal production format of 24 fps is preferably chosen to provide the greatest compatibility with existing and planned formats associated with HDTV standard 4:3 or widescreen 16:9 high-definition television, and film. Images are re-sized horizontally and vertically by pixel interpolation, thereby producing larger or smaller image dimensions so as to fill the particular needs of individual applications. Frame rates are adapted by inter-frame interpolation or by traditional schemes, including “3:2 pull-down” for 24-to-30 fps conversions. Simple speed-up (for 24-to-25 conversions) or slow-down (for 25-to-24 conversions) for playback, or by manipulating the frame rate itself using a program storage facility with asynchronous reading and writing capabilities. The step of converting the signal to a HDTV format is preferably performed using a modified upconversion process for wideband signals (utilizing a higher sampling clock frequency) and a resizing to HDTV format frame dimensions in pixels.
Owner:WASHINO KINYA +1

Multi-gear code rate adaptive demodulation system and method based on neural network

The invention provides a multi-gear code rate adaptive demodulation system and method based on a neural network so as to solve the technical problems of high complexity of realization of an existing multi-gear code rate adaptive demodulation system and large computation amount of a demodulation method. In the demodulation system, an ADC sampling module samples an analog modulation signal; a code element feature point extraction module carries out detection on phase jump points of the sampled signal by utilizing a one-dimensional convolution neural network trained by a neural network construction module; a code rate estimation module estimates code rate of the sampled signal according to the detection result; a signal-to-noise ratio estimation module estimates signal-to-noise ratio of the sampled signal; a controller module selects low-pass filter coefficients and an interpolation structure of a demodulation module according to the code rate estimation result and the signal-to-noise ratio estimation result, and calculates sampling rate conversion ratio of the demodulation module; and finally, the demodulation module carries out demodulation on the sampled signal according to the selected low-pass filter coefficients and the interpolation structure as well as the calculated sampling rate conversion ratio.
Owner:XIDIAN UNIV

Sampling rate conversion method and apparatus

Disclosed is a sampling rate conversion apparatus for converting first data, sampled at a first sampling rate, into second data, sampled at a second sampling rate, includes a FIFO for storing the first data responsive to a first clock signal and for outputting the first data as second data responsive to the second clock signal. This FIFO stores the first data based on a write control signal indicating whether or not the first data written directly previously is to be updated to the first data, and outputs the second data read out based on a read control signal indicating whether or not the second data as read out is to be read out during the next time interval as well. The sampling rate conversion apparatus also includes a frequency detection unit for measuring the first clock signal during the current time interval to generate the value of the first current clock frequency, generating the value of a current predicted clock frequency from the value of the first current clock frequency and the value of the directly previously predicted clock frequency and for using the value of the current predicted clock frequency as the directly previously predicted clock frequency during the next time interval, and a calculating unit supplied with the first data to output the data to the FIFO. The calculating unit generates write control signal and read control signal from the value of a second current frequency, generated by measuring the second clock signal during the current time interval, and from the value of the current predicted clock frequency, to output the so generated write and read control signal to the FIFO.
Owner:RENESAS ELECTRONICS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products