Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

128 results about "Incremental redundancy" patented technology

Method of link adaptation in enhanced cellular systems to discriminate between high and low variability

Method to perform link adaptation at the radio interfaces of an enhanced packet data cellular network handling several Modulation and Coding Schemes (MCS) for maximizing data throughput. In a preliminary off-line step the system behaviour, in terms of net throughput of the various available MCSs, is simulated for different C / l conditions. From the simulation two sets of tables are obtained, each table including upgrade and downgrade thresholds expressed in terms of Block Error Rate (BLER). Thresholds correspond to switching points from an MCs to the two available MCSs having the immediate less or more protection. The two sets of tables are referred to higher or lower diversity RF environments and are further specialized for taking into account EGPRS type II hybrid ARQ, namely Incremental Redundancy (IR). During transmission the transmitted blocks are checked for FEC and the results are sent to the network. The network continuously updates BLER using exponential smoothing. In order to achieve the correct time response, in spite of that RLC blocks can be received or not, a reliability filter is provided whose output is used to decide the weight between the new and old measurements to make the BLER filter impulse response exponentially decreasing with time. The IR efficiency is tested for each incoming block and an indicative variable IR status is filtered using the same approach used for BLER. Each actual threshold of BLER to be used in link adaptation is obtained by a linear interpolation between the tabulated threshold without IR and with perfect IR, both weighed with filtered IR status. Filtered BLER is then compared with said interpolated thresholds for testing the incoming of a MCS switching condition. Power control pursues the goal of maintaining constant QoS peak throughput per time slot(Fig 16).
Owner:SIEMENS INFORMATION & COMM NEWTWORKS INC

Method and apparatus for link error prediction in a communication system

A method is provided to accurately predict the probability of successfully recovering frames of (coded) information received over a wireless link, without having to decode the frame. This method, which consists of three steps, requires only limited information about the received signals and the forward error correction code and retransmission scheme being used. First, the signal to noise ratio (SNR) of each of the received signals is measured, where the average SNR is determined for multiple segments that together constitute the frame. Next, an algorithm is employed that takes these SNR values as inputs and determines the so-called effective SNR. The algorithm translates the measured SNR values using an appropriate convex metric, and subsequently combines the resulting values, thereby factoring in the effects of fading, multi-path, and other signal degradations. In the third stage, the effective SNR is used to determine the frame error rate by using a look-up table of a single reference curve that specifies the frame error rate of the actual error control code over an additive white Gaussian noise channel. This suffices to accurately predict the performance of a wide range of mobile communication channels. This method can be applied to a variety of retransmission strategies, including hybrid automatic-repeat request (ARQ) and incremental redundancy (IR) and combinations of these two strategies.
Owner:LUCENT TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products