Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1883 results about "Electron blocking layer" patented technology

Mesoscopic solar cell based on perovskite-kind light absorption material and preparation method thereof

The invention discloses a mesoscopic solar cell based on a perovskite-kind light absorption material. The mesoscopic solar cell comprises a glass substrate, a transparent conductive layer, a hole blocking layer, an electron transport layer and a back electrode; and the hole blocking layer is a compact layer, the electron transport layer is a porous thin film, a porous electron blocking layer is further disposed between the electron transport layer and the back electrode, and the electron transport layer and the electron blocking layer are filled with the perovskite-kind light absorption material. Or the mesoscopic solar cell comprises a glass substrate, a transparent conductive layer, a hole transport layer and a back electrode; and the hole transport layer is a porous thin film, a compact electron blocking layer is further disposed between the hole transport layer and the transparent conductive layer, and the hole transport layer is filled with the perovskite-kind light absorption material. The invention further discloses a preparation method of the mesoscopic solar cell. The cell has optimized structure, the filled perovskite material in mesoporous is more, morphology is good, charge transmission performance is improved, cell photoelectric conversion efficiency is greatly improved, and long-term illumination stability of the cell is substantially improved.
Owner:HUAZHONG UNIV OF SCI & TECH

LED structure with aluminum-component-gradient electron blocking layer

The invention relates to an LED structure with an aluminum-component-gradient electron blocking layer. Low-Al-component AlxGa1-xN is arranged on one side, which is in contract with an outer GaN barrier of a multiple-quantum well layer, of the aluminum-component-gradient electron blocking layer, the x is greater than or equal to 0 and smaller than or equal to 0.1, high-Al-component AlyGa1-yN is arranged on one side, which is in contact with a p-GaN layer, of the aluminum-component-gradient electron blocking layer, the y is greater than 0.1 and is smaller than or equal to 0.4, and the quantity of Al components in the middle of the aluminum-component-gradient electron blocking layer is gradually increased linearly. The low-Al-component AlGaN is arranged on one side, which is in contact with the GaN barrier, of the electron blocking layer, so that the density of polarization charges between interfaces of the electron blocking layer and the GaN barrier are effectively reduced, and a polarization field is weakened. Accordingly, the concentration of two-dimensional electron gas of the interfaces is greatly reduced, leakage current is decreased, the internal quantum efficiency of a device is improved in general, and the problem of attenuation of the quantum efficiency is solved.
Owner:JIANGSU YONGDING COMM

GaN-based VCSEL chip based on porous DBR and preparation method

The invention discloses a GaN-based VCSEL chip based on a porous DBR. The GaN-based VCSEL chip comprises a substrate, a buffer layer manufactured on the substrate, a bottom porous DBR layer manufactured on the buffer layer, an n-type doped GaN layer manufactured on the bottom porous DBR layer, an active layer manufactured on the n-type doped GaN layer, an electron blocking layer manufactured on the active layer, a p-type doped GaN layer manufactured on the electron blocking layer, a current limiting layer manufactured on the p-type doped GaN layer, a transparent electrode manufactured on the p-type doped GaN layer, an n electrode, a p electrode manufactured on the transparent electrode, and a dielectric DBR layer, wherein a table board is formed by etching the periphery of the n-type doped GaN layer downwards; a current window is formed in the center of the current limiting layer; the current limiting layer covers the active layer, the electron blocking layer and the side wall of a bulge part of the n-type doped GaN layer; the n electrode is manufactured on the table board of the n-type doped GaN layer; a notch is formed in the middle of the p electrode; and the dielectric DBR layer is manufactured on the transparent electrode in the notch of the p electrode.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Light-emitting diode epitaxial wafer and preparation method thereof

The invention discloses a light-emitting diode epitaxial wafer and a preparation method thereof, and belongs to the technical field of semiconductors. The light-emitting diode epitaxial wafer comprises a sapphire substrate, a low-temperature buffer layer, a high-temperature non-doped GaN layer, a first defect barrier layer, an N-type GaN layer, a stress release layer, a multi-quantum well layer, a P-type electron blocking layer, a P-type GaN layer and a P-type contact layer, wherein the low-temperature buffer layer, the high-temperature non-doped GaN layer, the first defect barrier layer, the N-type GaN layer, the stress release layer, the multi-quantum well layer, the P-type electron blocking layer, the P-type GaN layer and the P-type contact layer are sequentially laminated on the sapphire substrate; a second defect barrier layer is inserted into the N-type GaN layer; the first defect barrier layer comprises alternately laminated AlGaN layers and GaN layers; the second defect barrier layer comprises alternately laminated SiN films and N-type AlGaN layers; and the stress release layer comprises alternately laminated InGaN layers and GaN layers. According to the light-emitting diode epitaxial wafer, extension of defects formed by lattice mismatch into the multi-quantum well layer is effectively suppressed; stress release is enhanced; the crystal quality is improved; leakage passages are reduced; the anti-static electricity capacity of an LED chip is improved; and the product yield is improved.
Owner:HC SEMITEK SUZHOU

Gallium-nitride-based light emitting diode capable of improving electron injection efficiency

The invention discloses a gallium-nitride-based light emitting diode capable of improving electron injection efficiency. The gallium-nitride-based light emitting diode comprises a substrate, a gallium nitride nucleation layer, a buffer layer, an n-type contact layer, a lower multicycle n-type electron coupling layer, a lower tunneling potential barrier layer, an upper multicycle n-type electron coupling layer, an upper tunneling potential barrier layer, a multicycle active luminous layer, a negative electrode, a p-type electron blocking layer, a p-type contact layer and a positive electrode, wherein the gallium nitride nucleation layer is manufactured on the substrate; the buffer layer is manufactured on the gallium nitride nucleation layer; the n-type contact layer is manufactured on the buffer layer; a table top is formed on one side of the upper surface of the n-type contact layer; the lower multicycle n-type electron coupling layer is manufactured on the other side of the table top on the n-type contact layer; the lower tunneling potential barrier layer is manufactured on the lower multicycle n-type electron coupling layer; the upper multicycle n-type electron coupling layer is manufactured on the lower tunneling potential barrier layer; the upper tunneling potential barrier layer is manufactured on the upper multicycle n-type electron coupling layer; the multicycle active luminous layer is manufactured on the upper tunneling potential barrier layer; the negative electrode is manufactured on the table top of the n-type contact layer; the p-type electron blocking layer is manufactured on the multicycle active luminous layer; the p-type contact layer is manufactured on the p-type electron blocking layer; and the positive electrode is manufactured on the p-type contact layer to form the structure of the gallium-nitride-based light emitting diode.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products