Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

323 results about "Zirconium hydride" patented technology

Zirconium hydride describes an alloy made by combining zirconium and hydrogen. Hydrogen acts as a hardening agent, preventing dislocations in the zirconium atom crystal lattice from sliding past one another. Varying the amount of hydrogen and the form of its presence in the zirconium hydride (precipitated phase) controls qualities such as the hardness, ductility, and tensile strength of the resulting zirconium hydride. Zirconium hydride with increased hydrogen content can be made harder and stronger than zirconium, but such zirconium hydride is also less ductile than zirconium.

Nanostructure tungsten alloy and preparation method thereof

The invention discloses nanostructure tungsten alloy and a preparation method thereof. The alloy mainly comprises tungsten, and also comprises 0.05 to 1.0wt percent of zirconium and 0.2 to 2.0wt percent of rare-earth metal oxide particles, wherein the rare-earth metal oxide particle adopts yttrium oxide particles, lanthanum oxide particles or cerium oxide particles distributed in tungsten crystal particle. The method comprises the steps of firstly preparing ammonium paratungstate, rare-earth metal nitrate, citric acid and deionized water into transparent mixed liquor, stirring the transparent mixed liquor, obtaining gel after reaction, heating and drying the gel, then calcining the gel, so as to obtain a mixed powder of tungsten oxide and rare-earth metal oxide, putting the mixed powder into hydrogen atmosphere, so as to obtaining a mixed powder of tungsten and rare-earth metal oxide after reduction reaction, mixing the mixed powder with zirconium and zirconium hydride powder, so as to obtain a mixed powder of tungsten, zirconium, or zirconium hydride, and rare-earth metal oxide, and finally performing compaction and sintering to the mixed powder, so as to obtain the nanostructure tungsten alloy. The nanostructure tungsten alloy can be applied to fields of lighting, high-temperature components, aerospace devices, high temperature resistance containers and the like.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Cerium oxide-zirconium oxide based composite rare-earth oxide with high specific surface area and high oxygen storage capacity and preparation method thereof

The invention discloses a method for preparing a cerium oxide-zirconium oxide based composite rare-earth oxide. The method comprises the following steps of: (1) heating a zirconium salt solution at room temperature, slowly adding sulfate ions, controlling the temperature rise rate so that the temperature is increased in the range of 90-95 DEG C when the sulfate ions are added completely, and then preserving heat for 20-100 minutes, thereby forming a zirconium basic sulfate composite salt precursor; (2) adding a cerium salt and a rare-earth metal salt to the precursor solution and stirring evenly, thereby obtaining a slurry; (3) settling the slurry by using basic carbonate and/or a basic oxalate solution, thereby obtaining a precipitate; and (4) filtering and washing the precipitate obtained in the step (3), removing purities, and calcining the washed precipitate. The cerium oxide-zirconium oxide based composite rare-earth oxide prepared by the method by controlling raw materials and process conditions has the characteristics of being high in total fine pore volume, high in fresh specific surface area, high in oxygen storage capacity and the like.
Owner:CHAOZHOU THREE CIRCLE GRP

Cerium oxide and zirconium oxide based composite rare earth oxide with favorable ageing resistance and high reduction activity and preparation method of cerium oxide and zirconium oxide based composite rare earth oxide

The invention discloses a preparation method of a cerium oxide and zirconium oxide based composite rare earth oxide. The method comprises the following steps of: (1) weighting zircon salt with a certain mass and preparing a zircon salt solution; (2) mixing urea and sulfuric acid or sulfate to prepare an activating agent solution; (3) heating the zircon salt solution under the room temperature, meanwhile, slowly and dropwise adding the activating agent solution, controlling the temperature rise speed to ensure that the temperature is raised to 60 DEG C after the addition of the activating agent solution is finished, continuing to raising the temperature to 90-95 DEG C, and keeping the temperature for 20-100min to form a basic zirconium sulfate composite salt precursor solution; (4) preparing soluble cerate and rare earth metal salt, adding the soluble cerate and the rare earth metal salt into the basic zirconium sulfate composite salt precursor solution, and settling by using a soluble hydroxide or an aqueous solution of ammonia; and (5) filtering and cleaning precipitates, and then, calcining the precipitates to obtain the cerium oxide and zirconium oxide based composite rare earth oxide. The cerium oxide and zirconium oxide based composite rare earth oxide prepared by using the method provided by the invention has favorable ageing resistance and high reduction activity.
Owner:CHAOZHOU THREE CIRCLE GRP

Method for preparing large powder metallurgy TZM blank with uniform carbon and oxygen distribution

The invention discloses a method for preparing a large powder metallurgy TZM blank with uniform carbon and oxygen distribution, which comprises the following steps of: 1, weighing raw materials; 2, mixing powder, namely mixing the weighed four raw materials twice under vacuum or the protection of inert gas, mixing titanium hydride powder, zirconium hydride powder and carbon black powder to prepare mixed powder, adding a volatile organic solvent into the mixed powder, uniformly stirring to prepare suspension, adding the weighed molybdenum powder into the suspension for uniform mixing, and adding residual molybdenum powder for uniform mixing; 3, performing cold isostatic pressing; and 4, sintering by keeping the temperature at stages, namely adopting a vacuum sintering furnace and sintering at three stages, wherein the process comprises the following steps of: raising the temperature at the first stage, raising the temperature at the second stage, and sintering at high temperature. The preparation method has the advantages of reasonable design, simple and convenient operation, and good using effect. The carbon content in the center and on the surface of the prepared larger-size TZM blank can be controlled to be approximately consistent, and the oxygen content in the center and on the surface of the TZM blank also can be reduced to a lower level.
Owner:NORTHWEST INSTITUTE FOR NON-FERROUS METAL RESEARCH

Preparation method of yttria-stabilized zirconia tetragonal nano powder with high specific surface area

ActiveCN103524128ASolve serious sintering and agglomerationSolution areaMaterial nanotechnologyZirconium hydrideSolution combustion
A preparation method of an yttria-stabilized zirconia tetragonal nano powder with high specific surface area. The method is characterized by comprising the following steps: (1) respectively weighing zirconium oxychloride octahydrate?and an yttrium raw material according to a stoichiometric ratio of zirconium and yttrium in (Y2O3)x(ZrO2) 1-2x (0.005<=x<=0.150), according to the amount of a target product, converting the yttrium raw material into an yttrium nitrate solution by dissolving, and then completely dissolving the zirconium oxychloride octahydrate; (2) respectively adding a soluble salt and organic fuel to the solution obtained in the step (1), heating for dissolving, continuing heating and concentrating to a sticky state, igniting in a heating furnace chamber at 400-1000 DEG C, and taking out the powder after complete combustion; and (3) washing, filtering and drying the powder obtained in the step (2). The invention effectively solves the problems of serious particle sintering agglomeration and small specific area in the process of solution combustion for synthesis of zirconium oxide; the powder has specific surface area as high as 378 m<2> / g and particle size about 2.8 nm; and the materials are more accessible and cheaper, so as to facilitate industrialized preparation.
Owner:赣州点金新材料科技有限公司

Spraying powder, hot-sprayed in-situ synthesized zirconium boride-zirconium carbide base ceramic coating and preparation method thereof

The invention provides spraying powder. The spraying powder comprises aluminum powder, zirconium hydride powder and boron carbide powder. Compared with the prior art, the spraying powder contains zirconium hydride, the zirconium hydride can replace metal zirconium so as to lower the spontaneous combustion risk of powder manufacturing and can be resolved to generate active zirconium and hydrogen gas in the spraying process, and the generated hydrogen gas can be ionized or combusted so as to further increase the temperature of a heat source and improve the reducing atmosphere; the spraying powder is good in liquidity and self-propagating reaction characteristic and can make a prepared ceramic base coating compact in structure and low in porosity. According to the invention, the compositions of the spraying powder are reasonably designed, the ceramic base coating mainly comprising zirconium boride and zirconium carbide can be synthesized in situ, and there is no need to spray zirconium boride powder and zirconium carbide powder independently for obtaining the ceramic base coating containing the zirconium boride and the zirconium carbide. The invention further provides the hot-sprayed in-situ synthesized zirconium boride-zirconium carbide base ceramic coating and a preparation method thereof.
Owner:ACADEMY OF ARMORED FORCES ENG PLA

Method for preparing zirconium iron pink pigment from electrically-melted zirconium oxide

The invention discloses a method for preparing zirconium iron pink pigment from electrically-melted zirconium oxide. The method comprises the following steps of: 1) reshaping crystal appearance, namely performing zirconium oxide crystal appearance spheroidization on the common electrically-melted zirconium oxide powder by using a special device, so that the appearance of the electrically-melted zirconium oxide tends to be close to a spherical state; 2) removing impurities, namely washing the product obtained in the step 1) with diluted acid until the content of the impurities such as aluminium oxide (Al2O3), ferric oxide (Fe2O3), silicon oxide (SiO2), phosphorus pentoxide (P2O5) and the like is less than 0.1 percent, and then drying; 3) controlling granularity, namely grinding the electrically-melted zirconium oxide with impurities removed and controlling the granularity of the electrically-melted zirconium oxide to be 0 to 5 mu m; and 4) preparing samples, namely weighing the electrically-melted zirconium oxide obtained in the step 3), zirconium iron pink and other raw materials, mixing the materials completely and uniformly, grinding the mixture finely, heating the mixture to calcine for 5 hours, preserving heat for 1 hour when the temperature is 1,000 to 1,100 DEG C, cooling, and taking out the product. By the method, influence of reaction impurities is removed; reaction activity is improved; and the zirconium iron pink pigment is prepared from the electrically-melted zirconium oxide instead of zirconium, so the production cost of the zirconium iron pink pigment is reduced.
Owner:SANXIANG ADVANCED MATERIALS

Cerium oxide and zirconium oxide based sosoloid catalyst, preparation method and application thereof

The invention relates to a catalytic material for purifying tail gas of an automobile, in particular to a cerium oxide and zirconium oxide based sosoloid catalyst, a preparation method and application thereof. The cerium oxide and zirconium oxide based sosoloid catalyst comprises 50-79.5wt% of zirconium oxide, 20-49.5wt% of cerium oxide and 0.5-25wt% of oxides of other elements, wherein the zirconium oxide, the cerium oxide and the oxides of other elements is present in a sosoloid form, and the oxides of other elements are one or more oxides of lanthanons except cerium. The preparation method is as follows: continuous coprecipitation is carried out on zirconium oxychloride, saline solution of cerium and saline solution of lanthanons except cerium to obtain the cerium oxide and zirconium oxide based sosoloid catalyst. In the invention, by adding the zirconium oxide and the oxides of the lanthanons except cerium, the prepared cerium oxide and zirconium oxide based sosoloid catalyst has favorable catalytic performance and greatly improved thermal stability. The preparation method can prepare the cerium oxide and zirconium oxide based sosoloid catalyst under relatively lower temperature and normal pressure.
Owner:顾冬萍

Medical prosthetic devices and implants having improved biocompatibility

A medical prosthetic device or medical implant containing a metal material (A) selected from the group consisting of titanium or an alloy thereof, zirconium or an alloy thereof, tantalum or an alloy thereof, hafnium or an alloy thereof, niobium or an alloy thereof and a chromium-vanadium alloy, wherein surface parts of the metal material (A) are coated with a layer of a corresponding hydride material (B) selected from titanium hydride, zirconium hydride, tantalum hydride, hafnium hydride, niobium hydride and chromium and/or vanadium hydride, respectively, said device or implant being characterised in that the layer of hydride material (B) comprises one or more biomolecule substances (C) associated therewith. The device or implant exhibits improved biocompatibility. The metal material (A) is preferably titanium. The biomolecule substance (C) may be selected from the following types of substances: Natural or recombinant bio-adhesives; natural or recombinant cell attachment factors; natural, recombinant or synthetic biopolymers; natural or recombinant blood proteins; natural or recombinant enzymes; natural or recombinant extracellular matrix proteins; natural or synthetic extracellular matrix biomolecules; natural or recombinant growth factors and hormones; natural, recombinant or synthetic peptide hormones; natural, recombinant or synthetic deoxyribonucleic acids; natural, recombinant or synthetic ribonucleic acids; natural or recombinant receptors; enzyme inhibitors; drugs; biologically active anions and cations; vitamins; adenosine monophosphate (AMP), adenosine diphosphate (ADP) or adenosine triphosphate (A TP); marker biomolecules; amino acids; fatty acids; nucleotides (RNA and DNA bases); and sugars.
Owner:NUMERICAL TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products