Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1230 results about "Silicon oxynitride" patented technology

Silicon oxynitride is a ceramic material with the chemical formula SiOₓNy. While in amorphous forms its composition can continuously vary between SiO₂ (silica) and Si₃N₄ (silicon nitride), the only known intermediate crystalline phase is Si₂N₂O. It is found in nature as the rare mineral sinoite in some meteorites and can be synthesized in the laboratory.

Precursors for depositing silicon containing films and processes thereof

Processes for precursors for silicon dielectric depositions of silicon nitride, silicon oxide and silicon oxynitride on a substrate using a hydrazinosilane of the formula:[R12N—NH]nSi(R2)4−nwhere each R1 is independently selected from alkyl groups of C1 to C6; each R2 is independently selected from the group consisting of hydrogen, alkyl, vinyl, allyl, and phenyl; and n=1–4. Some of the hydrazinosilanes are novel precursors.
Owner:VERSUM MATERIALS US LLC

Uniform batch film deposition process and films so produced

A batch of wafer substrates is provided with each wafer substrate having a surface. Each surface is coated with a layer of material applied simultaneously to the surface of each of the batch of wafer substrates. The layer of material is applied to a thickness that varies less than four thickness percent across the surface and exclusive of an edge boundary and having a wafer-to-wafer thickness variation of less than three percent. The layer of material so applied is a silicon oxide, silicon nitride or silicon oxynitride with the layer of material being devoid of carbon and chlorine. Formation of silicon oxide or a silicon oxynitride requires the inclusion of a co-reactant. Silicon nitride is also formed with the inclusion of a nitrification co-reactant. A process for forming such a batch of wafer substrates involves feeding the precursor into a reactor containing a batch of wafer substrates and reacting the precursor at a wafer substrate temperature, total pressure, and precursor flow rate sufficient to create such a layer of material. The delivery of a precursor and co-reactant as needed through vertical tube injectors having multiple orifices with at least one orifice in registry with each of the batch of wafer substrates and exit slits within the reactor to create flow across the surface of each of the wafer substrates in the batch provides the within-wafer and wafer-to-wafer uniformity.
Owner:AVIZA TECHNOLOGY INC

Hexakis(monohydrocarbylamino) disilanes and method for the preparation thereof

A composition and method of preparation, to provide silane compounds that are free of chlorine. The compounds are hexakis(monohydrocarbylamino)disilanes with general formula (I) ((R)HN)3—Si—Si—(NH(R))3  (I) wherein each R independently represents a C1 to C4 hydrocarbyl. These disilanes may be synthesized by reacting hexachlorodisilane in organic solvent with at least 6-fold moles of the monohydrocarbylamine RNH2 (wherein R is a C1 to C4 hydrocarbyl). Such compounds have excellent film-forming characteristics at low temperatures. These films, particularly in the case of silicon nitride and silicon oxynitride, also have excellent handling characteristics.
Owner:LAIR LIQUIDE SA POUR LETUDE & LEXPLOITATION DES PROCEDES GEORGES CLAUDE

Semiconductor memory

A semiconductor memory having an electrically writable / erasable memory cell includes a first gate insulating layer made from a compound containing silicon and oxygen; a first charge-storage layer being in contact with the first gate insulating layer made from a silicon nitride film, a silicon oxynitride film, or an alumina film; a second insulating layer thicker than the first gate insulting layer; a second charge-storage layer being in contact with the second insulating layer; a third insulating layer thicker than the first gate insulating layer being in contact with the second charge-storage layer; and a control electrode upon the third insulating layer.
Owner:KK TOSHIBA

Gas barrier

InactiveUS20070135552A1Improved resistance to water vapor transmissionSmall sizeMaterial nanotechnologyPolymer scienceSealant
Nanoparticles of amorphous aluminum oxynitride or silicon oxynitride having a very high aspect ratio are used to fill polymeric materials to provide products that have an extremely low WVTR / OTR. Such products are particularly effective for incorporation into organic light-emitting devices or the like which are susceptible to degradation from moisture and / or oxygen. Pressure sensitive and / or thermosetting adhesives filled with such particles create excellent sealants. Polymeric sheets or films made from resin in which these nanoparticles are dispersed, or intimately associated with, before extrusion exhibit very low WVTR / OTR.
Owner:GENERAL ATOMICS

Method for etching silicon oxynitride and inorganic antireflection coatings

The present disclosure pertains to a method for plasma etching a semiconductor patterning stack. The patterning stack includes at least one layer comprising either a dielectric-comprising antireflective material or an oxygen-comprising material. In many instances the dielectric-comprising antireflective material will be an oxygen-comprising material, but it need not be limited to such materials. In one preferred embodiment of the method, the chemistry enables the plasma etching of both a layer of the dielectric-comprising antireflective material or oxygen-comprising material and an adjacent or underlying layer of material. In another preferred embodiment of the method, the layer of dielectric-comprising antireflective material or oxygen-comprising material is etched using one chemistry, while the adjacent or underlying layer is etched using another chemistry, but in the same process chamber. Of particular interest is silicon oxynitride, an oxygen-comprising material which functions as an antireflective material. A preferred embodiment of the method provides for the use of a source of carbon and an appropriate halogen-comprising plasma, to achieve selective etch of one oxygen-containing material compared with another material which contains a more limited amount of oxygen.
Owner:APPLIED MATERIALS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products