Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1509 results about "Oxide ceramic" patented technology

Ceramic composite material of high temperature insulation sandwich structure and method for preparing ceramic composite material

Disclosed are a ceramic composite material of a high temperature insulation sandwich structure and a method for preparing the ceramic composite material. A core layer of the composite material is an aerogel composite material layer reinforced by high temperature resistant inorganic fibers, oxide ceramic composite material surface plates reinforced by high temperature resistant inorganic fibers are compounded on the upper surface and the lower surface of the core layer, the thickness of the core layer is larger than or equal to 2mm, and the thicknesses of the upper surface plate and the lower surface plate respectively range from 0.1mm to 3.0mm. The method for preparing the ceramic composite material of the high temperature insulation sandwich structure includes the steps: (1) selecting aerogel composite materials reinforced by the high temperature resistant inorganic fibers as materials of the core layer with the thickness larger than or equal to 2mm; (2) tiling high temperature resistant inorganic fiber cloth or thin-layer fabrics on the upper surface and the lower surface of the core layer to perform needling, puncture or sewing; (3) sucking sol in a vacuum manner and gelating the sol at the temperature of 30-200 DEG C; and (4) performing heat treatment. The ceramic composite material of the high temperature insulation sandwich structure integrates the functions of heat insulation, bearing, wave penetration and the like.
Owner:NAT UNIV OF DEFENSE TECH

Graphene and oxide ceramic composite material and preparation method

The invention relates to a graphene and oxide ceramic composite material and a preparation method. Graphite oxide is used as a graphene precursor, the graphite oxide is mixed with zirconium oxide ceramic powder according to a certain proportion, and the mixture is molded and sintered so as to form the graphene and oxide ceramic composite material. The graphene and oxide ceramic composite material has a nanometer composite structure with network connections, nanometer layered graphene is uniformly distributed on a ceramic matrix to form the nanometer composite structure, the nanometer composite structure is conductive to strengthening of strength of the ceramic and endows the ceramic with the functional characteristics of semiconductor, electric conduction, heat conduction, electrochemistry, and the like, and the composite material can be used for developing sensors, electromagnetic shielding, electric heating devices, heat conduction materials, energy-storage electrodes, and the like and is used for the fields of aerospace, electronics, chemical engineering and energy sources. The graphene and oxide ceramic composite material is formed by one step in the sintering process, does not need the processes of functionalizing, mixing and the like, is simple in preparation process and is suitable for large-scale production.
Owner:TIANJIN UNIV

High-entropy brazing filler metal for brazing non-oxide ceramics and non-oxide ceramic composite material and preparation method of brazing filler metal

The invention relates to a high-entropy brazing filler metal and a preparation method thereof, and particularly relates to a high-entropy brazing filler metal for brazing non-oxide ceramics and the composite material of the non-oxide ceramics and the preparation method of the brazing filler metal, aiming to solve the problem that the brazing filler metal at the joint of the non-oxide ceramics and the ceramic composite material which are soldered together is unreliable in performance at a temperature higher than 500 DEG C in the prior art. The brazing filler metal comprises the following components in parts by weight: 18 to 24 parts of Ni, 14.3 to 19 parts of Cr, 16.8 to 22.5 parts of Co, 15.9 to 21 parts of Fe, 10.1 to 13.5 parts of Cu, and 0 to 24.9 parts of Ti or TiH2. The preparation method comprises the following steps of: carrying out vacuum melting on the weighed components at the temperature of 1200 to 1800 DEG C, performing linear cutting and carrying out foiling or composite tabletting on the components, so as to obtain the brazing filler metal; or the preparation method comprises the following steps of: carrying out ball-milling on the components in a ball material mass ratio of (12-16):1, and then tabletting and cleaning the components to obtain the brazing filler metal. The strength of the alloy joint obtained by using the method reaches 35 to 71 MPa, and the strength retention of the alloy joint at a high temperature of 800 DEG C exceeds 67%.
Owner:HARBIN INST OF TECH

Method for preventing corrosion and marine creature fouling on ship propeller

The invention relates to a method for preventing corrosion and marine creature fouling on a ship propeller. Cathode protection, a ceramic insulating coating and a metallic antifouling coating are organically combined in the method. The method comprises the following steps of: removing scales on the surface of the copper alloy propeller, obtaining a uniform and rough surface, and spraying a metallic adhesive coating by adopting a thermal spraying method; preparing a metallic oxide ceramic insulating coating on the surface of the adhesive coating by adopting the thermal spraying method, wherein the ceramic insulating coating comprises single-component oxides such as Al2O3, Cr2O3 and the like and multi-component composite powder of TiO2 or SiO2 with low melting point; preparing the metallic antifouling coating on the ceramic insulating coating, wherein the metallic antifouling coating is made of pure copper or copper alloy with antifouling function; and meanwhile, performing cathode protection on the propeller. The ceramic and the metallic coating adopted in the method have higher bonding force and longer protection life, the current requirement of the ship cathode protection is reduced, the corrosion and marine creature fouling problems of the ship propeller can be simultaneously solved, and the ceramic and the metallic coating have obvious corrosion resistance and antifouling effect.
Owner:725TH RES INST OF CHINA SHIPBUILDING INDAL CORP

Preparation method of magnesium oxide foam ceramic filter for filtering magnesium and magnesium alloy melt

The invention provides a magnesium oxide ceramic foam filter for filtering a magnesium and magnesium alloy melt and a preparation method thereof, relating to the field of metallurgy. The process is as follows: a polyurethane foam template is soaked in sodium hydroxide solution (10%) for 30 minutes under the temperature of 50 DEG C and is then washed by water and dried; electric-melting magnesium oxide, magnesium fluoride and water are mixed in a ball-milling manner according to the mass ratio so as to obtain water-based dispersion slurry; the polyurethane foam template is soaked in the slurry, and bisque is obtained through repeated slurry dipping and centrifugal slurry throwing; the bisque is put into an oven; finally, the dried bisque is put into a high-temperature furnace, is heated to 1,200 to 1,300 DEG C at the speed of 1 to 3 DEG C / min, is heat-preserved for 2 hours, and is then naturally cooled in a furnace body. An obtained product of the invention has good chemical stability in the magnesium and the magnesium alloy melt, does not pollute the magnesium and the magnesium alloy melt, has good functions of absorbing and filtering nonmetallic inclusions in the magnesium and the magnesium alloy melt, and is suitable for filtering as well as purifying the magnesium and the magnesium alloy melt.
Owner:SHENYANG INSTITUTE OF CHEMICAL TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products