Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

71results about How to "Response recovery time is short" patented technology

Nano zinc metastannate air-sensitive material with hollow fiber structure and preparation method thereof

InactiveCN102126745AImprove performanceThe hollow fiber structure with superior performance is superiorMaterial nanotechnologyTin compoundsHollow fibreFiber diameter
The invention belongs to the technical field of sensing materials, in particular to a nano zinc metastannate air-sensitive material with a hollow fiber structure and a preparation method thereof. In the technical scheme provided by the invention, the nano zinc metastannate air-sensitive material with the hollow fiber structure comprises zinc metastannate, and has the fiber diameter of between 10 micrometers and 15 micrometers and the wall thickness of about 160-200 nanometers; the entire wall layer consists of zinc metastannate nanorods with the lengths of between 100 nanometers and 160 nanometers and the diameters of between 40 nanometers and 50 nanometers and has the specific surface area of between 36.12 m<2> / g and 28.25 m<2> / g. The invention also provides the preparation method of thenano zinc metastannate air-sensitive material with the hollow fiber structure, the preparation method has the advantages of simple and flexible preparation process, low cost, and capability of effectively controlling the sizes of crystalline dimensions, and the prepared nano zinc metastannate air-sensitive material with the hollow fiber structure has the characteristics of high sensitivity and selectivity to ethanol and quick response and recovery capabilities.
Owner:UNIV OF JINAN

Preparation method of ethanol gas sensor component having ultrafast response recovery property

The invention discloses a preparation method of an ethanol gas sensor component having an ultrafast response recovery property. In the preparation method, LaFexO3 nano particles in non-stoichiometric ratio prepared through a sol-gel method are employed as a working substance to prepare a beside-heating-type ceramic tube gas sensor component. By means of reduction of a relative element ratio of iron to lanthanum in a precursor, the carrier concentration is increased and the resistance of the component is reduced. By means of selection of a proper La/Fe element ratio, size of crystal grains is reduced and oxygen adsorption capacity is improved, so that the gas sensor is improved in sensitivity on ethanol, is reduced in working temperature and is reduced in response recovery time. A LaFe0.8O3 beside-heating-type ethanol gas sensor prepared in the invention can reach 138 in the sensitivity on ethanol in 1000 ppm at the working temperature of 140 DEG C, wherein the response and recovery times are respectively 1 s and 1.5 s. The gas sensor is less than 22 in all sensitivities on methane, acetone, carbon dioxide and glycerol in 1000 ppm. The gas sensor is high in sensitivity, is low in the working temperature, is ultrafast in response recovery property and is high in selectivity at the same time on ethanol, and is low in cost and is environmental-friendly.
Owner:TAIYUAN UNIV OF TECH

Preparation method and application of three-dimensional hollow multilevel-structured stannic oxide gas-sensitive material

The invention relates to a preparation method and an application of a three-dimensional hollow multilevel-structured stannic oxide gas-sensitive material. The preparation method comprises the following steps: preparing a precursor via a hydrothermal synthesis method by taking carbon microspheres as templates, stannous chloride as a stannum source, mercaptoacetic acid as a surfactant and urea as a precipitant, and roasting so as to obtain the gas-sensitive material with stannic oxide nanosheet self-assembled three-dimensional floriated hollow multilevel structures, wherein the gas-sensitive material is between 300nm and 500nm in diameter. The preparation method is simple in process, low in cost and environment-friendly. According to the method provided by the invention, after the gas-sensitive property of a gas-sensitive sensor prepared from the gas-sensitive material is tested, the results show that a gas-sensitive element has relatively high sensitivity to ethyl alcohol, and the gas-sensitive sensor is short in response time and recovery time, so that the gas-sensitive sensor has high stability. Thus, the gas-sensitive material provided by the invention can be applied to the gas-sensitive sensor for the ethyl alcohol.
Owner:UNIV OF JINAN

Copper oxide doped tin dioxide base ammonia gas sensitive sensor manufacturing method

The present invention discloses a copper oxide doped tin dioxide base ammonia gas sensitive sensor manufacturing method. The method comprises the following steps: sequentially placing a Cu target material with a purity of 99.99% and a Sn target material with a purity of 99.99% on two radio frequency sputtering targets, and placing a Al2O3 ceramic tube on a sample holder; carrying out vacuum pumping on the system before sputtering until air pressure of the system achieves 10<-3>-10<-5> Pa; opening gas path valves of oxygen gas and argon gas, wherein the air pressure is maintained to 6*10<0>-3*10<-1> Pa; carrying out pre-sputtering for 10 min, then removing a blocking disc, concurrently adjusting a power of the Sn target to 60-80 W, adjusting a power of the Cu target to 20-60 W, and sputtering for 45 min; opening the vacuum chamber to take the sample when the air pressure is 10<5> Pa; and carrying out annealing for 1-3 h at a temperature of 300-500 DEG C in a muffle furnace to obtain the finished product. The manufactured gas sensitive element provides good selectivity for ammonia gas, can quickly and effectively detect ammonia gas from a lot of mixing gas, and has characteristics of high sensitivity and short response recovery time.
Owner:HEBEI UNIV OF TECH

Gas-sensor nanometer sensitive material, slurry with gas-sensor nanometer sensitive material, preparing method of gas-sensor nanometer sensitive material, preparing method of slurry and application of gas-sensor nanometer sensitive material

The invention relates to a gas-sensor nanometer sensitive material, slurry with the gas-sensor nanometer sensitive material, preparing of the gas-sensor nanometer sensitive material, preparing of the slurry and an application of the gas-sensor nanometer sensitive material. A preparing method of the gas-sensor nanometer sensitive material includes the following steps that 1, stannate is added into ultrapure water and subjected to ultrasonic dispersion, a stannate solution is obtained, a urea ethanol solution is added, ultrasonic processing continues, an obtained mixed solution is transferred into a hydrothermal reaction kettle, after reaction is completed, cooling is carried out, and bottom precipitate is collected, centrifugally washed, arranged in a dryer and dried; 2, nanometer SnO2 hollow sphere powder obtained after drying is added into distilled water to be subjected to ultrasonic dispersion, a Pd(NO3)2 solution is dropwise added under the stirring condition, ammonium hydroxide is added till the pH of the mixed solution ranges from 9 to 12, the mixture is stirred at the indoor temperature, bottom precipitate is centrifugally collected, washed to be neutral and dried, and finally Pd-doping nanometer SnO2 hollow spheres are obtained. The gas-sensor nanometer sensitive material, the slurry, the preparing and the application have the advantages that the preparing methods are simple, the quantity of introduced foreign ions is small, the yield is high, volume production is facilitated, the specific area of the material is large, dispersity is good, and high sensitivity and short response recovery time are achieved.
Owner:WUHAN INSTITUTE OF TECHNOLOGY

Gold-doped titanium dioxide flower-like nanostructured material and preparation method and application thereof

The invention discloses a gold-doped titanium dioxide flower-like nanostructured material and a preparation method and an application thereof. In the nanostructured material, the average size of gold nanometer particle as a nucleus (pistil) is 20-50nm, and the average size of titanium dioxide nanoparticle as a casing (petal) is 50-100 nm. The preparation method comprises the steps of (1) mixing an auric chloride acid solution and a trisodium citrate solution, stirring, then adding a ascorbic acid solution and stirring, then adding a titanium tetrafluoride solution and stirring uniformly to obtain a mixed solution; (2) conducting high temperature hydrothermal reaction to the mixed solution obtained from step (1) for a period of time, and washing and drying a sediment obtained from the reaction to obtain a gold-doped titanium dioxide flower-like nanostructured material. The obtained material has the advantages that the size of the nanometer particles are uniform, and the disperse performance is good. The material is applied for preparing gas-sensitive elements, and has a high sensitivity and selectivity and short response recovery time to carbon monoxide.
Owner:WUHAN INSTITUTE OF TECHNOLOGY +1

Manufacturing method for high sensitivity semiconductor nano ultraviolet light detector

The invention discloses a manufacturing method for a high sensitivity semiconductor nano ultraviolet light detector. According to the method, firstly, a two-dimensional ultrathin structure monocrystalline ZnO nano material is manufactured; the two-dimensional ultrathin structure monocrystalline ZnO nano material is transfered from a growth substrate; the two-dimensional ultrathin structure monocrystalline ZnO nano material is mixed with organic solution or deionized water; ultrasonic dispersion of the two-dimensional ultrathin structure monocrystalline ZnO nano material solution is carried out; the two-dimensional ultrathin structure monocrystalline ZnO nano material solution is coated on a surface of a semiconductor, insulation and conductive substrate; along a length direction of the two-dimensional ultrathin structure monocrystalline ZnO nano material, and conductive metal electrodes are plated at two ends; a mask is utilized to cover the two-dimensional ultrathin structure monocrystalline ZnO nano material, an insulation oxide covering layer is plated, an insulation oxide half-covering or symmetric covering structure is formed, and the two-dimensional ultrathin structure monocrystalline ZnO nano ultraviolet light detector is acquired. The method has advantages of simple structure, small volume, rapid response and high sensitivity.
Owner:UNIV OF SHANGHAI FOR SCI & TECH

Sensitive material for detecting formaldehyde gas, preparation method and application thereof

The invention discloses a sensitive material for detecting formaldehyde gas, a preparation method and application thereof. Shaddock peel is used as a biological template to synthesize a formaldehyde gas sensitive material of cadmium doped one-dimensional SnO2 nanofiber. The preparation steps are as follows: (1) peeling off the inner layer of the shaddock peel and cutting into blocks, then immersing in deionized water and anhydrous ethanol, carrying out ultrasonic treatment and drying; (2) dissolving SnCl4.5H2O in a mixed liquor of deionized water and anhydrous ethanol, and then adding CdCl2.2(0 / 1)H2O into the mixed liquor; (3) adding the biological template shaddock peel and urea into the mixed liquor and carrying out ultrasonic treatment; (4) transferring the above solution to a PTFE lining, carrying out thermal insulation in a constant temperature drying oven, and then taking out and cooling to room temperature; washing the obtained product by alternating centrifugal washing with deionized water and anhydrous ethanol, drying, annealing, and collecting to obtain the sensitive material. When being used to prepare gas sensors for detecting formaldehyde gas, the above material has advantages of high sensitivity, fast response, good selectivity, low operating temperature, good stability and the like.
Owner:YUNNAN UNIV

Nickel oxide/titanium dioxide nanorod composite structure gas sensor as well as preparation method and application thereof

The invention relates to the technical field of gas sensors, and provides a nickel oxide/titanium dioxide nanorod composite structure gas sensor as well as a preparation method and application thereof. The gas sensor provided by the invention comprises a substrate, a nickel oxide/titanium dioxide nanorod composite structure layer and an interdigital electrode which are sequentially contacted frombottom to top. Nickel oxide and titanium dioxide in the nickel oxide/titanium dioxide nanorod composite structure layer are compounded to form a heterojunction, so that the gas sensitivity of the sensor is improved, and the gas sensitivity of the sensor can also be improved due to the unique oxidation-reduction characteristic of the nickel oxide. The gas sensor provided by the invention is enlarged in gas concentration detection range, short in response recovery time and high in sensitivity and repeatability, has good response to gases such as hydrogen, carbon monoxide and ammonia gas, and canrealize high-sensitivity detection just at room temperature. The preparation method provided by the invention has the advantages of simple steps, low cost, strong operability and low requirements onequipment, and can be used for large-scale synthesis.
Owner:HUBEI UNIV

Production method of gold-doped vanadium dioxide nanosheet structured room temperature CH4 gas-sensitive sensor

The invention discloses a production method of a gold-doped vanadium dioxide nanosheet structured room temperature CH4 gas-sensitive sensor. The method comprises the following steps: cleaning a ceramic substrate; weighing V2O5 powder; preparing vanadium dioxide nanosheets through a single vapor transportation technology; doping the surfaces of the vanadium dioxide nanosheets with gold; and producing the gold-doped vanadium dioxide nanosheet gas-sensitive sensor element. The method provided by the invention has the advantages of simplicity in operation, realization of low-cost preparation of the gold-doped vanadium dioxide nano-sheets, few control technology conditions needed by the single vapor transportation technology, and no pollution to environment. The gold-doped vanadium dioxide nano-sheets have large specific surface area and large gas diffusion channel, and are in favor of adsorbing and diffusing gases. The gold-doped vanadium dioxide nanosheet structured room temperature CH4 gas-sensitive sensor produced in the invention has the advantages of high sensitivity and short response recovery time in the detection of low-concentration CH4 gas at room temperature. The study of a gold-doped vanadium dioxide composite material in reduction of the temperature of the gas sensor and improvement of the sensitivity of the gas sensor still has great research potential.
Owner:TIANJIN UNIV

Method for producing gas sensor for detecting novel refrigerant HC-600a

The invention relates to a preparation method of a gas-sensitive element used for detecting a novel refrigerant, HC-600a, belonging to the technical field of the preparation process of a metal oxide semiconductor gas-sensitive element. The material of the gas-sensitive element of the invention is based on SnO2-Fe2O3 dibasic nano composite material, wherein, the mole ratio of Sn/Fe is 1 to 15: 100; noble metal elements, Au and Ru, with the mass percentage of 0.1 percent to 1.0 percent are doped by a dipping method, the doped gas-sensitive material is obtained, then is ground, and stirred to be pasty by a proper amount of deionized water and polyethylene glycol; and the pasty gas-sensitive material is uniformly coated on the surface of an aluminium oxide ceramic tube and is processed for two hours by annealing at the temperature of 500 DEG C so as to obtain the gas-sensitive element used for detecting the novel refrigerant HC-600a. The gas-sensitive element prepared by the invention has the advantages of high gas sensitivity to the refrigerant, HC-600a, good selectivity to interference gas, short time for response and recovery, good stability and the like, and can be used in the fields of leak detection of the novel and environment-friendly refrigerant, HC-600a, and detection of relevant industries of isobutene.
Owner:SHANGHAI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products