Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

100 results about "Motion tracking system" patented technology

Performing cardiac surgery without cardioplegia

A surgical system or assembly for performing cardiac surgery includes a surgical instrument; a servo-mechanical system engaged to the surgical instrument for operating the surgical instrument; and an attachment assembly for removing at least one degree of movement from a moving surgical cardiac worksite to produce a resultant surgical cardiac worksite. The surgical system or assembly also includes a motion tracking system for gathering movement information on a resultant surgical cardiac worksite. A control computer is engaged to the attachment assembly and to the motion tracking system and to the servo-mechanical system for controlling movement of the attachment assembly and for feeding gathered information to the servo-mechanical system for moving the surgical instrument in unison with the resultant surgical cardiac worksite such that a relative position of the moving surgical instrument with respect to the resultant surgical cardiac worksite is generally constant. A video monitor is coupled to the control computer; and an input system is coupled to the servo-mechanical system and to the control computer for providing a movement of the surgical instrument. The video monitor displays movement of the surgical instrument while the resultant surgical cardiac worksite appears substantially stationary, and while a relative position of the surgical instrument moving in unison with the resultant surgical cardiac worksite, as a result from the movement information gathered by the motion tracking system, remains generally constant. A method of performing cardiac surgery without cardioplegia comprising removing at least one degree of movement freedom from a moving surgical cardiac worksite to produce at least a partially stationary surgical cardiac worksite while allowing a residual heart section, generally separate from the at least partially stationary surgical cardiac worksite, to move as a residual moving heart part. Cardiac surgery is performed on the at least partially stationary cardiac worksite with a surgical instrument such as needle drivers, forceps, blades and scissors.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Performing cardiac surgery without cardioplegia

A surgical system or assembly for performing cardiac surgery includes a surgical instrument; a servo-mechanical system engaged to the surgical instrument for operating the surgical instrument; and an attachment assembly for removing at least one degree of movement from a moving surgical cardiac worksite to produce a resultant surgical cardiac worksite. The surgical system or assembly also includes a motion tracking system for gathering movement information on a resultant surgical cardiac worksite. A control computer is engaged to the attachment assembly and to the motion tracking system and to the servo-mechanical system for controlling movement of the attachment assembly and for feeding gathered information to the servo-mechanical system for moving the surgical instrument in unison with the resultant surgical cardiac worksite such that a relative position of the moving surgical instrument with respect to the resultant surgical cardiac worksite is generally constant. A video monitor is coupled to the control computer; and an input system is coupled to the servo-mechanical system and to the control computer for providing a movement of the surgical instrument. The video monitor displays movement of the surgical instrument while the resultant surgical cardiac worksite appears substantially stationary, and while a relative position of the surgical instrument moving in unison with the resultant surgical cardiac worksite, as a result from the movement information gathered by the motion tracking system, remains generally constant. A method of performing cardiac surgery without cardioplegia comprising removing at least one degree of movement freedom from a moving surgical cardiac worksite to produce at least a partially stationary surgical cardiac worksite while allowing a residual heart section, generally separate from the at least partially stationary surgical cardiac worksite, to move as a residual moving heart part. Cardiac surgery is performed on the at least partially stationary cardiac worksite with a surgical instrument such as needle drivers, forceps, blades and scissors.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Motion tracking system for real time adaptive imaging and spectroscopy

Current MRI technologies require subjects to remain largely motionless for achieving high quality magnetic resonance (MR) scans, typically for 5-10 minutes at a time. However, lying absolutely still inside the tight MR imager (MRI) tunnel is a difficult task, especially for children, very sick patients, or the mentally ill. Even motion ranging less than 1 mm or 1 degree can corrupt a scan. This invention involves a system that adaptively compensates for subject motion in real-time. An object orientation marker, preferably a retro-grate reflector (RGR), is placed on a patients' head or other body organ of interest during MRI. The RGR makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track the organ of interest. A camera-based tracking system observes the marker and continuously extracts its pose. The pose from the tracking system is sent to the MR scanner via an interface, allowing for continuous correction of scan planes and position in real-time. The RGR-based motion correction system has significant advantages over other approaches, including faster tracking speed, better stability, automatic calibration, lack of interference with the MR measurement process, improved ease of use, and long-term stability. RGR-based motion tracking can also be used to correct for motion from awake animals, or in conjunction with other in vivo imaging techniques, such as computer tomography, positron emission tomography (PET), etc.
Owner:UNIV OF HAWAII +3

Sytem and a Method for Motion Tracking Using a Calibration Unit

The invention relates to motion tracking system (10) for tracking a movement of an object (P) in a three-dimensional space, the said object being composed of object portions having individual dimensions and mutual proportions and being sequentially interconnected by joints the system comprising orientation measurement units (S1, S3, . . . SN) for measuring data related to at least orientation of the object portions, wherein the orientation measurement units are arranged in positional and orientational relationships with respective object portions and having at least orientational parameters; a processor (3, 5) for receiving data from the orientation measurement units, the said processor comprising a module for deriving orientation and/or position information of the object portions using the received data and a calibration unit (7) arranged to calculate calibration values based on received data and pre-determined constraints for determining at least the mutual proportions of the object portions and orientational parameters of the orientation measurement units based on received data, pre-determined constrains and additional input data. The invention further relates to a method for tracking a movement of an object, a medical rehabilitation system and an animation system.
Owner:XSENS HLDG BV

Hand movement tracking system and tracking method

The invention discloses a hand movement tracking system and a hand movement tracking method. The invention comprises an attitude and heading reference system based on an accelerometer, a gyroscope and a magnetic sensor, and a hand movement tracking method based on the attitude and heading reference system. The hand movement tracking method comprises the following steps: firstly, obtaining a triaxial acceleration measured by the accelerometer, a triaxial angular velocity measured by the gyroscope and a triaxial magnetic-field component measured by the magnetic sensor, performing error compensation on the magnetic sensor by adopting a least square method to establish an error model after an upper computer receives sensor data, eliminating high-frequency noise of the triaxial acceleration by virtue of a window low-pass filter, and establishing an error model for the gyroscope so as to perform error compensation on random drift of the gyroscope; secondly, effectively integrating the gyroscope, the accelerometer and the magnetic sensor by virtue of an improved adaptive complementary filtering algorithm to obtain an attitude angle and a path angle; and finally, performing gravity compensation and discrete digital integration on acceleration signals to obtain a velocity and a track of a hand movement. The tracking system and the tracking method disclosed by the invention can be applied to a man-machine interactive system, is convenient to operate, and is strong in experience feeling.
Owner:ZHEJIANG UNIV

System and method for tracking facial muscle and eye motion for computer graphics animation

A motion tracking system enables faithful capture of subtle facial and eye motion using a surface electromyography (EMG) detection method to detect muscle movements and an electrooculogram (EOG) detection method to detect eye movements. Signals corresponding to the detected muscle and eye movements are used to control an animated character to exhibit the same movements performed by a performer. An embodiment of the motion tracking animation system comprises a plurality of pairs of EMG electrodes adapted to be affixed to a skin surface of a performer at plural locations corresponding to respective muscles, and a processor operatively coupled to the plurality of pairs of EMG electrodes. The processor includes programming instructions to perform the functions of acquiring EMG data from the plurality of pairs of EMG electrodes. The EMG data comprises electrical signals corresponding to muscle movements of the performer during a performance. The programming instructions further include processing the EMG data to provide a digital model of the muscle movements, and mapping the digital model onto an animated character. In another embodiment of the invention, a plurality of pairs of EOG electrodes are adapted to be affixed to the skin surface of the performer at locations adjacent to the performer's eyes. The processor is operatively coupled to the plurality of pairs of EOG electrodes and further includes programming instructions to perform the functions of acquiring EOG data from the plurality of pairs of EOG electrodes. The EOG data comprises electrical signals corresponding to eye movements of the performer during a performance. The programming instructions further provide processing of the EOG data and mapping of the processed EOG data onto the animated character. As a result, the animated character will exhibit the same muscle and eye movements as the performer.
Owner:SONY CORP +1

Motion tracking system for real time adaptive imaging and spectroscopy

Current MRI technologies require subjects to remain largely motionless for achieving high quality magnetic resonance (MR) scans, typically for 5-10 minutes at a time. However, lying absolutely still inside the tight MR imager (MRI) tunnel is a difficult task, especially for children, very sick patients, or the mentally ill. Even motion ranging less than 1 mm or 1 degree can corrupt a scan. This invention involves a system that adaptively compensates for subject motion in real-time. An object orientation marker, preferably a retro-grate reflector (RGR), is placed on a patients' head or other body organ of interest during MRI. The RGR makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track the organ of interest. A camera-based tracking system observes the marker and continuously extracts its pose. The pose from the tracking system is sent to the MR scanner via an interface, allowing for continuous correction of scan planes and position in real-time. The RGR-based motion correction system has significant advantages over other approaches, including faster tracking speed, better stability, automatic calibration, lack of interference with the MR measurement process, improved ease of use, and long-term stability. RGR-based motion tracking can also be used to correct for motion from awake animals, or in conjunction with other in vivo imaging techniques, such as computer tomography, positron emission tomography (PET), etc.
Owner:UNIV OF HAWAII +3

Self-palpation device for examination of breast with 3-D positioning system

The present invention provides a method and device for high resolution 3-D detection of changes in mechanical and structural properties of the breast tissue that are indicative of breast cancer development. In one embodiment of the invention a compact hand held device comprises a pressure sensor array, a self-contained motion tracking system integrated with the pressure sensor array, and an electronic unit with a display. Mechanical imaging of the breast is achieved by pressing the sensing pad onto the breast, oscillating it over breast tissue portions with sequential returning to a reference point. Calculation of a trajectory and orientation of the pressure sensor array can include correction of the device position and orientation with a suitable Kalman filter using measured signals supplied from the motion tracking system and from the pressure sensor array. Analysis of pressure response data for oscillatory deformations comprises cumulative summation of a plurality of pressure patterns after spatially shifting every pattern by a pre-calculated value in an opposite direction of pressure sensor array motion. Determining mechanical and geometrical features of the breast inner structures includes formation of a 3-D mechanical image of the breast combining results of local scanning at all breast sites using calculated position and orientation data for the pressure sensor array.
Owner:ARTANN LAB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products