Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

199 results about "Magnetic resonance scanner" patented technology

A magnetic resonance imaging instrument (MRI scanner), or "nuclear magnetic resonance (NMR) imaging" scanner as it was originally known, uses powerful magnets to polarize and excite hydrogen nuclei (single proton) in water molecules in human tissue, producing a detectable signal which is spatially encoded, resulting in images of the body.

Method and device for automated generation of a formal description of a magnetic resonance system measurement sequence, using a sequence model

A magnetic resonance sequence model that is a formal description of a measurement sequence is used to automate measurement sequence programming. The sequence model allows a system-independent specification of the measurement sequence for execution in a magnetic resonance scanner. The sequence model is as formal as possible; it is limited to the minimum required information for description of a measurement sequence without limiting the flexibility in the sequence programming. A method for formal description of the measurement sequence describes the measurement sequence by a number of parameters to be parameterized. The parameterization of the measurement sequence can ensue automatically from the formalized description of the measurement sequence, except for a set of parameters that are still be determined. For automatic generation of an executable measurement sequence, the method determines the parameters to be determined using a solver, under consideration of boundary conditions, so that a consistent set of parameters is created that completely describes the measurement sequence. This complete description of parameter values of the measurement sequence is then be translated automatically into a programming language that can be directly executed in the magnetic resonance scanner.
Owner:SIEMENS HEALTHCARE GMBH

Fractional anisotropy microstructure characteristic extraction method based on kurtosis tensor and apparatus thereof

The invention relates to the image processing and medical instrument technology field and provides a burgeoning parameter extraction method of biological tissue anisotropy detection, wherein the method is used for clinic application. An analysis method of reconstructing and quantizing a clear, refine and highly-stable biological-tissue microcosmic anisotropy characteristic and a correlation apparatus are obtained. In a technical scheme used in the invention, based on the kurtosis-tensor fractional anisotropy microstructure characteristic extraction method, a subject collects multiple b value diffusion weight images of tissues along a plurality of diffusion sensitivity gradient directions on a magnetic resonance scanner; after the diffusion weight images are preprocessed, in an individual space, a second-order diffusion tensor and a fourth-order kurtosis tensor matrix reflecting a water molecule diffusion distribution probability density function characteristic in the tissues are acquired through fitting; through matrix operation, the corresponding fractional anisotropy FA and kurtosis tensor fractional anisotropy KTFA are acquired; and combining a characteristic parameter, a nerve fiber microstructure characteristic is acquired. The method and the apparatus are mainly used in medical equipment designing and manufacturing.
Owner:TIANJIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products