Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

123 results about "Process zone" patented technology

Copper conductor annealing process employing high speed optical annealing with a low temperature-deposited optical absorber layer

A method of forming a conductor in a thin film structure on a semiconductor substrate includes forming high aspect ratio openings in a base layer having vertical side walls, depositing a dielectric barrier layer comprising a dielectric compound of a barrier metal on the surfaces of the high aspect ratio openings including the vertical side walls, depositing a metal barrier layer comprising the barrier metal on the first barrier layer, depositing a main conductor species seed layer on the metal barrier layer and depositing a main conductor layer. The method further includes annealing the main conductor layer by (a) directing light from an array of continuous wave lasers into a line of light extending at least partially across the thin film structure, and (b) translating the line of light relative to the thin film structure in a direction transverse to the line of light. The method of Claim 1 further comprising, prior to the annealing step, depositing an amorphous carbon optical absorber layer on the main conductor layer. The step of depositing an amorphous carbon optical absorber layer includes introducing a carbon-containing process gas into a reactor chamber containing the substrate in a process zone of the reactor, applying RF source power to an external reentrant conduit of the reactor to generate a reentrant toroidal RF plasma current passing through the process zone and applying a bias voltage to the substrate.
Owner:APPLIED MATERIALS INC

Reactor for wafer backside polymer removal using plasma products in a lower process zone and purge gases in an upper process zone

A reactor is provided for removing polymer from a backside of a workpiece. The reactor includes a vacuum chamber having a ceiling, a floor and a cylindrical side wall. The reactor further includes workpiece support apparatus within the chamber configured for a workpiece to be placed thereon with its front side facing the ceiling. The support apparatus is configured to leave at least an annular periphery of the backside of the workpiece exposed. A confinement member defines a narrow gap with an outer edge of the workpiece, the narrow gap being on the order of about 1% of the workpiece diameter, the narrow gap corresponding to a boundary dividing the chamber between an upper process zone and a lower process zone, the reactor further comprising a vacuum pump coupled to the lower process zone. An external plasma-generating chamber is coupled to the chamber, the external plasma-generating chamber configured to introduce a plasma by-product into the lower process zone, and a supply of a polymer etch precursor gas to the external plasma-generating chamber. The ceiling includes a gas distribution plate facing the upper process zone, the reactor further comprising a purge gas supply coupled to the gas distribution plate.
Owner:APPLIED MATERIALS INC

Apparatus for thermal-slide debonding of temporary bonded semiconductor wafers

A debonder apparatus for debonding two via an adhesive layer temporary bonded wafers includes a top chuck assembly, a bottom chuck assembly, a static gantry supporting the top chuck assembly, an X-axis carriage drive supporting the bottom chuck assembly, and an X-axis drive control. The top chuck assembly includes a heater and a wafer holder. The X-axis drive control drives horizontally the bottom chuck assembly from a loading zone to a process zone under the top chuck assembly and from the process zone back to the loading zone. A wafer pair comprising a carrier wafer bonded to a device wafer via an adhesive layer is placed upon the bottom chuck assembly at the loading zone oriented so that the unbonded surface of the device wafer is in contact with the bottom assembly and is carried by the X-axis carriage drive to the process zone under the top chuck assembly and the unbonded surface of the carrier wafer is placed in contact with the top chuck assembly. The X-axis drive control initiates horizontal motion of the X-axis carriage drive along the X-axis while heat is applied to the carrier wafer via the heater and while the carrier wafer is held by the top chuck assembly via the wafer holder and thereby causes the device wafer to separate and slide away from the carrier wafer.
Owner:SUSS MICRO TEC LITHOGRAPHY

Enhanced hydrocarbon recovery by vaporizing solvents in oil sand formations

InactiveUS20070199705A1Promote recoveryLimit upward growthFluid removalHydrocarbon solventsSoil science
The present invention involves a method and apparatus for enhanced recovery of petroleum fluids from the subsurface by injecting a hydrocarbon solvent vapor in contact with the oil sand formation and the heavy oil and bitumen in situ. Multiple propped vertical hydraulic fractures are constructed from the well bore into the oil sand formation. The hydrocarbon solvent vapor and a non-condensing diluent gas are injected into the well bore, fill the hydraulic fractures, and thus contact and diffuse into the in situ bitumen. The hydrocarbon solvent vapors diffuse into the bitumen from the vertical faces of the propped fractures. The bitumen softens and flows by gravity to the well bore, exposing fresh surface of bitumen for the process to progressively soften and mobilizes the bitumen in a predominantly circumferentially, i.e. orthogonal to the propped fracture, diffusion direction at a nearly uniform rate into the oil sand deposit. The mobile oil may be deasphalted by the condensed solvent, leaving the heavy asphaltenes behind in the oil sand pore space with little loss of inherent fluid mobility in the processed oil sands. The processed product is produced with the dissolved solvent along with a tail diluent gas. The tail diluent gas is enriched with hydrocarbon solvent and re-injected into the process zone and the cycle repeated.
Owner:GEOSIERRA

Enhanced hydrocarbon recovery by vaporizing solvents in oil sand formations

The present invention involves a method and apparatus for enhanced recovery of petroleum fluids from the subsurface by injecting a hydrocarbon solvent vapor in contact with the oil sand formation and the heavy oil and bitumen in situ. Multiple propped vertical hydraulic fractures are constructed from the well bore into the oil sand formation. The hydrocarbon solvent vapor and a non-condensing diluent gas are injected into the well bore, fill the hydraulic fractures, and thus contact and diffuse into the in situ bitumen. The hydrocarbon solvent vapors diffuse into the bitumen from the vertical faces of the propped fractures. The bitumen softens and flows by gravity to the well bore, exposing fresh surface of bitumen for the process to progressively soften and mobilizes the bitumen in a predominantly circumferentially, i.e. orthogonal to the propped fracture, diffusion direction at a nearly uniform rate into the oil sand deposit. The mobile oil may be deasphalted by the condensed solvent, leaving the heavy asphaltenes behind in the oil sand pore space with little loss of inherent fluid mobility in the processed oil sands. The processed product is produced with the dissolved solvent along with a tail diluent gas. The tail diluent gas is enriched with hydrocarbon solvent and re-injected into the process zone and the cycle repeated.
Owner:GEOSIERRA

Method for studying material mechanics behaviors of concrete crack process zone

The invention discloses a method for studying material mechanics behaviors of a concrete crack process zone. The method includes the steps that original-level concrete samples are manufactured, a crack is prefabricated in the top of each sample, and a steel block is bonded to each crack; the overall dimensions of the samples and the masses of wedge-shaped loading frames are measured; strain gages are arranged on the two sides of the pointed end of the prefabricated crack of each sample; the positions of quartile points are marked at the bottom of each sample; each sample is installed on a testing machine through loading pulleys along with the corresponding wedge-shaped loading frame; a knife edge thin steel plate is installed in the middle of each prefabricated crack; loading is carried out on each sample through the testing machine, and data are collected through a dynamic strain indicator while loading is carried out; images are collected through a high-accuracy CCD camera till the samples are damaged; the collected data and the collected images are processed and analyzed, and analysis results are obtained. According to the method, as the optical method DIC technology is combined with a traditional electrical testing method, the crack initiation toughness of concrete is determined, and harmful cracks of a new concrete structure are effectively prevented.
Owner:HOHAI UNIV

Method and device for connecting plastic material using high welding speed

Joining endless polymer materials (3) comprises shining upper material and contact surface between the upper and lower materials by using laser beam (2). The contact surface is transparent the laser beam. The lower material is opaque to the laser beam. The two materials are melted and joined to each other under pressure. Joining endless polymer materials (3) comprises shining upper material and contact surface between upper and lower materials by using laser beam (2). The contact surface is transparent the laser beam. The lower material is opaque to the laser beam. The two materials are melted and joined to each other under pressure. The laser beam and the materials to be joined are moved relative to each other to produce a welded seam running in the longitudinal direction at the contact surface. A process zone (P) is provided. The material is heated continuously to the melting temperature in a preheating zone (I) by using laser beams and is melted in a melting zone (II). An Independent claim is included for polymer materials joining apparatus comprising laser beam, material pressing device, and laser beam producing devices. The laser beam shines through the upper material because of transparency of the upper material and at the contact surface with the lower material. The lower material absorbs the laser beam. The laser beam heats the materials and melts them. The material pressing device joins endless materials. The endless materials are guided through two contra-rotating rollers (17, 18). The rollers press against each other. The first roller is made from a material transparent to a laser beam. The first roller is Tubular. The second roller is made from a material that can be deformed easily at the surface. The laser beam(s) producing devices produces laser beam(s) at the contact surface arranged in the first roller.
Owner:LEISTER TECHNOLOGIES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products