Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

615results about "High-frequency/infra-red heating baking" patented technology

Cast pedestal with heating element and coaxial heat exchanger

The present invention provides a heat transfer assembly that, when coupled to an object, is capable of keeping the object at a uniform elevated temperature while removing large amounts of heat from an external source. The assembly may be contained in a pedestal for use in a UV-cure chamber. The heat transfer assembly includes a heating element to control the wafer temperature and a cooling element to remove incident IR heat from the wafer and pedestal. A heat resistant layer having a calibrated heat resistance is located between the heating and cooling elements and between the wafer and the cooling elements. The heat resistant layer is able to sustain high temperature gradient from the wafer to the coolant so that the coolant does not boil while permitting enough heat to be conducted away from the wafer to maintain the desired set-point temperature.
Owner:NOVELLUS SYSTEMS

Model-based predictive control of thermal processing

A nonlinear model-based predictive temperature control system is described for use in thermal process reactors. A multivariable temperature response is predicted using a nonlinear parameterized model of a thermal process reactor. The nonlinear parameterized model is implemented using a neural network. Predictions are made in an auto-regressive moving average fashion with a receding prediction horizon. Model predictions are incorporated into a control law for estimating the optimum future control strategy. The high-speed, predictive nature of the controller renders it advantageous in multivariable rapid thermal processing reactors where fast response and high temperature uniformity are needed.
Owner:ASM AMERICA INC

Heat Treating Apparatus

[Problems] To prevent both slips caused by damage from projections, and slips caused by adhesive force occurring due to excessive smoothing.[Means for Solving the Problems] The heat treating apparatus includes a processing chamber for heat treating wafers and a boat for supporting the wafers in the processing chamber. The boat further includes a wafer holder in contact with the wafer and a main body for supporting the wafer holder. The wafer holder diameter is 63 to 73 percent of the wafer diameter, and the surface roughness Ra of the portion of the wafer holder in contact with the wafer is set from 1 μm to 1,000 μm. The wafer can be supported so that the amount of wafer displacement is minimal and both slips due to damage from projections on the wafer holder surface, and slips due to the adhesive force occurring because of excessive smoothing can be prevented in that state.
Owner:KOKUSA ELECTRIC CO LTD +1

Substrate support

An apparatus for supporting a substrate is described that has a ball adapted to minimize damage between the substrate support and the substrate supported thereon. In one embodiment, an apparatus for supporting a substrate includes ball disposed on an inclined ball support surface. The ball support surface is adapted to bias the ball toward one side of the ball support surface thereby providing space for the ball to roll as the substrate supported thereon changes in length when exposed to thermal influences. In another embodiment, the apparatus further comprises a cage adapted to capture the ball to the ball support surface.
Owner:APPLIED MATERIALS INC

System and method for determining the temperature of a semiconductor wafer

A system and method for determining the temperature of a semiconductor wafer at the time of thermal contact of the semiconductor wafer with a temperature sensing element. According to the invention, a temperature profile of the temperature sensing element is recorded from the time of thermal contact up to the time of thermal equilibrium between the semiconductor wafer and the temperature sensing element and the temperature of the semiconductor wafer at the time of thermal contact is determined on the basis of a time period between the time of thermal contact and the time of thermal equilibrium and the temperature TG of the semiconductor wafer reached at the time tG of thermal equilibrium is determined by back calculation with the aid of an equation derived from Newton's law of cooling.
Owner:POLARIS INNOVATIONS LTD

Heat treatment method, heat treatment apparatus and substrate processing apparatus

Disclosed is a heat treatment unit 4 serving as a heat treatment apparatus, which includes a chamber 42 for containing a wafer W on which a low dielectric constant interlayer insulating film is formed, a formic acid supply device 44 for supplying gaseous formic acid into the chamber 42, and a heater 43 for heating the wafer W in the chamber 42 which is supplied with formic acid by the formic acid supply device 44.
Owner:TOKYO ELECTRON LTD

System and method for determining the temperature of a semiconductor wafer

A system and method for determining the temperature of a semiconductor wafer at the time of thermal contact of the semiconductor wafer with a temperature sensing element. According to the invention, a temperature profile of the temperature sensing element is recorded from the time of thermal contact up to the time of thermal equilibrium between the semiconductor wafer and the temperature sensing element and the temperature of the semiconductor wafer at the time of thermal contact is determined on the basis of a time period between the time of thermal contact and the time of thermal equilibrium and the temperature TG of the semiconductor wafer reached at the time tG of thermal equilibrium is determined by back calculation with the aid of an equation derived from Newton's law of cooling.
Owner:POLARIS INNOVATIONS LTD

Photoirradiation thermal processing apparatus and thermal processing susceptor employed therefor

A susceptor is formed with a cavity having a tapered surface and a receiving surface. The gradient α of the tapered surface with respect to the receiving surface is set to at least 5° and less than 30°, so that a semiconductor wafer received by the susceptor can be located on the receiving surface through the tapered surface while the semiconductor wafer can be protected against excess stress also when the surface of the wafer abruptly thermally expands due to flashlight irradiation and can be prevented from cracking in thermal processing. Thus provided are a thermal processing susceptor and a thermal processing apparatus capable of preventing a substrate from cracking in thermal processing.
Owner:DAINIPPON SCREEN MTG CO LTD

Fast heating and cooling wafer handling assembly and method of manufacturing thereof

A thermal control device for wafer processing which comprises a) a platform for placement of an object of various sizes to be heated, b) at least a shaft extending substantially transverse to the platform; and c) a plurality of resistance heating elements patterned in a plurality of circuits defining at least one zone for independent controlled heating of objects of varying sizes on the platform.
Owner:GENERAL ELECTRIC CO

Movable radiant heat sources

A semiconductor processing apparatus including a processing chamber and a plurality of radiant heat sources. The radiant heat sources heat a workpiece within the chamber. At least one of the radiant heat sources is movable during processing in an oscillatory motion along a path less than about 10 mm from a geometric center of the oscillatory motion.
Owner:ASM IP HLDG BV

Rapid conductive cooling using a secondary process plane

A method and apparatus for thermally processing a substrate is described. The apparatus includes a substrate support configured to move linearly and / or rotationally by a magnetic drive. The substrate support is also configured to receive a radiant heat source to provide heating region in a portion of the chamber. An active cooling region comprising a cooling plate is disposed opposite the heating region. The substrate may move between the two regions to facilitate rapidly controlled heating and cooling of the substrate.
Owner:APPLIED MATERIALS INC

Vacuum thermal annealer

A vacuum thermal annealing device is provided having a temperature control for use with various materials, such as semiconductor substrates. A vacuum is used to remove air and outgas residual materials. Heated gas is injected planar to a substrate as pressure is quickly raised. Concurrent with the heated gas flow, a chamber wall heater is turned on and maintains a temperature for a proper annealing time. Upon completion of the annealing process, the chamber wall heater shuts down and air is forced around the chamber wall heater. Additionally, cool gas replaces the heated gas to cool the substrate.
Owner:STEED TECH

Model-based predictive control of thermal processing

A nonlinear model-based predictive temperature control system is described for use in thermal process reactors. A multivariable temperature response is predicted using a nonlinear parameterized model of a thermal process reactor. The nonlinear parameterized model is implemented using a neural network. Predictions are made in an auto-regressive moving average fashion with a receding prediction horizon. Model predictions are incorporated into a control law for estimating the optimum future control strategy. The high-speed, predictive nature of the controller renders it advantageous in multivariable rapid thermal processing reactors where fast response and high temperature uniformity are needed.
Owner:ASM AMERICA INC

Method and system for digital narrowband, wavelength specific cooking, curing, food preparation, and processing

A system for direct injection of selected thermal-infrared (IR) wavelength radiation or energy into food items for a wide range of processing purposes is provided. These purposes may include heating, raising or maintaining the temperature of the food articles. The system is especially applicable to operations that require or benefit from the ability to irradiate at specifically selected wavelengths or to pulse or inject the radiation. The system is particularly advantageous when functioning at higher speeds and in a non-contact environment with the target.
Owner:PRESSCO IP LLC

Processing multilayer semiconductors with multiple heat sources

A method and apparatus for rapid thermal annealing comprising a plurality of lamps affixed to a lid of the chamber that provide at least one wavelength of light, a laser source extending into the chamber, a substrate support positioned within a base of the chamber, an edge ring affixed to the substrate support, and a gas distribution assembly in communication with the lid and the base of the chamber. A method and apparatus for rapid thermal annealing comprising a plurality of lamps comprising regional control of the lamps and a cooling gas distribution system affixed to a lid of the chamber, a heated substrate support with magnetic levitation extending through a base of the chamber, an edge ring affixed to the substrate support, and a gas distribution assembly in communication with the lid and the base of the chamber.
Owner:APPLIED MATERIALS INC

Thermal oxidation of silicon using ozone

A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
Owner:APPLIED MATERIALS INC

Food warming apparatus and method

In general, one embodiment of the invention is directed to food holding apparatus for holding pre-cooked food at a selected holding temperature. The apparatus comprises a cabinet having at least one holding compartment therein, and pre-cooked food in the holding compartment, the food having been previously cooked in a cooking appliance. At least one radiant heat source is spaced above the food a distance less than 12 inches for delivering radiant heat to the food. A control mechanism varies the amount of radiant heat delivered by the heat source to the food to maintain the food at the selected holding temperature. A related method is also disclosed.
Owner:DUKE MANUFACTURING COMPANY

System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy

Various processes for heating semiconductor wafers is disclosed. In particular, the present invention is directed to configuring light sources emitting light energy onto a wafer in order to optimize absorption of the energy by the wafer. Optimization is carried out by varying the angle of incidence of the light energy contacting the wafer, using multiple wavelengths of light, and configuring the light energy such that it contacts the wafer in a particular polarized state. In one embodiment, the light energy can be emitted by a laser that is scanned over the surface of the wafer.
Owner:MATTSON TECHNOLOGY +1

Oven for heating a product with RF energy

RF energy provided by electrodes positioned between a product is used to heat a product that exhibits a variable impedance during the heating process. As the product's impedance changes during the heating process, RF heating system impedance can be maintained constant by adjusting the distance between the electrodes, adjusting the impedance of a variable impedance device connected between the RF power source and an electrode, or a combination of electrode distance adjustment and impedance adjustment of the variable impedance device. The system is particularly applicable to the heating or pasteurization of bulk food products with multiple heating zones.
Owner:XP POWER LLC

Use of infrared camera for real-time temperature monitoring and control

Embodiments of the invention generally contemplate an apparatus and method for monitoring and controlling the temperature of a substrate during processing. One embodiment of the apparatus and method takes advantage of an infrared camera to obtain the temperature profile of multiple regions or the entire surface of the substrate and a system controller to calculate and coordinate in real time an optimized strategy for reducing any possible temperature non-uniformity found on the substrate during processing.
Owner:APPLIED MATERIALS INC

Pulsed processing semiconductor heating methods using combinations of heating sources

Pulsed processing methods and systems for heating objects such as semiconductor substrates feature process control for multi-pulse processing of a single substrate, or single or multi-pulse processing of different substrates having different physical properties. Heat is applied a controllable way to the object during a background heating mode, thereby selectively heating the object to at least generally produce a temperature rise throughout the object during background heating. A first surface of the object is heated in a pulsed heating mode by subjecting it to at least a first pulse of energy. Background heating is controlled in timed relation to the first pulse. A first temperature response of the object to the first energy pulse may be sensed and used to establish at least a second set of pulse parameters for at least a second energy pulse to at least partially produce a target condition.
Owner:MATTSON TECHNOLOGY +1

Black reflector plate

In a system for thermal processing of a semiconductor substrate, an RTP system employs a reflector plate which is highly reflective of radiation in a target wavelength range, and less reflective of radiation outside that target wavelength range. In one embodiment, the reflector plate has a highly reflective portion overlying a less reflective portion, wherein the highly reflective portion is highly reflective of radiation in the target wavelength range. As radiation emitted by the substrate is received on the reflector, the radiation in the target wavelength range is reflected, thereby facilitating measurement of the substrate temperature by the pyrometer(s), while radiation outside the target wavelength range is absorbed, thereby facilitating cooling of the substrate.
Owner:APPLIED MATERIALS INC

Susceptor for heat treatment and heat treatment apparatus

A susceptor for holding a semiconductor wafer when flash heating is performed by exposing the semiconductor wafer to a flash of light from flash lamps is formed with a recessed portion of a concave configuration having an outer diameter greater than the diameter of the semiconductor wafer, as seen in plan view. When the susceptor is viewed from above, the concave configuration of the recessed portion is greater in plan view size than the semiconductor wafer. The susceptor formed with the recessed portion holds the semiconductor wafer in such a manner that an inner wall surface of the recessed portion supports a peripheral portion of the semiconductor wafer. As a result, a gap filled with a layer of gas is formed between the lower surface of the semiconductor wafer and the upper surface of the susceptor, to prevent a crack in the semiconductor wafer when the semiconductor wafer is exposed to a flash of light from the flash lamps.
Owner:DAINIPPON SCREEN MTG CO LTD

Heat treatment apparatus for heating substrate by irradiation with flashes of light, and heat treatment method

A first flash heating is performed in which a lower flash lamp irradiates a back surface of a semiconductor wafer with flashes of light, so that heat conduction from the back surface to a surface of the semiconductor wafer raises the temperature of the surface from the room temperature to an intermediate temperature. Then, a second flash heating is performed in which an upper flash lamp irradiates the surface of the semiconductor wafer with flashes of light, to raise the temperature of the surface of the semiconductor wafer from the intermediate temperature to a target temperature. Since only the irradiation with flashes of light emitted from the lower flash lamp and the upper flash lamp is used to cause the semiconductor wafer having the room temperature to reach the target temperature, all heat treatments can be completed in an extremely short time of one second or less.
Owner:DAINIPPON SCREEN MTG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products