Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1108 results about "Metal doped" patented technology

Preparation method of metal doped lithium manganese phosphate/graphene/carbon composite material

The invention discloses a preparation method of a metal doped lithium manganese phosphate/graphene/carbon composite material. By adopting the method, the graphene is added in the preparation process of the lithium manganese phosphate to replace partial conductive carbon black; and a precursor which is a mixture of three solutions is transferred to a reaction tank and is subjected to solvothermal reaction at 160-300 DEG C for 1-20 hours to obtain the graphene in-situ composite lithium manganese phosphate material. According to the preparation method disclosed by the invention, the surface-contact compounding of graphene and lithium manganese phosphate is achieved by taking advantage of the flexibility characteristic of graphene, and the electronic conductivity of the lithium manganese phosphate is improved by taking advantage of the extremely high conductivity of graphene. By adopting the preparation method disclosed by the invention, not only is the intrinsic electronic conductivity of the composite material improved, but also a graphene film layer with extremely high conductivity is uniformly coated on the surface of the lithium manganese phosphate material, the graphene and the conductive carbon black together form a three-dimensional conductive network, and therefore the electrochemical performance of the lithium manganese phosphate material is obviously improved, and the composite material can be used as the anode material of a lithium ion battery.
Owner:HEBEI UNIV OF TECH

Method for preparing lithium battery anode material lithium transition metal composite oxide

InactiveCN101916843ASolve the problem of uniform and orderly arrangementUniform average particle sizeCell electrodesTransition metal atomsComposite oxide
The invention discloses a method for preparing a lithium battery anode material lithium transition metal composite oxide, which comprises the following steps of: uniformly mixing transition metal mixed M salt and metal doped M' salt in accordance with a stoichiometric proportion in a mechanical mode; calcining at high temperature to form the transition metal composite oxide; performing secondary mechanical mixing on the transition metal composite oxide and the lithium salt; and calcining at high temperature to prepare the lithium transition metal composite oxide. By adopting a secondary mechanical mixing-solid-phase sintering process, the method solves the problems that a pure-phase quaternary lithium transition metal composite oxide cannot be synthesized by the traditional dry mixing solid-phase sintering process, and the improved wet mixing-solid-phase sintering method cannot make lithium and transition metal atoms uniformly and sequentially arranged; the lithium battery anode material lithium transition metal composite oxide has the advantages of no impurity phase, and uniform average grain diameter and excellent cycle performance of the product; and the preparation method has the advantages of simpleness, low production cost and suitability for industrial production.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Preparation method and application of graphite-phase carbon nitride-based heterogeneous Fenton-like catalyst

InactiveCN108380235AEvenly dopedGood ability to catalyze PMS to degrade PPCPs pollutants in waterWater contaminantsCatalyst activation/preparationSynthesis methodsMuffle furnace
The invention relates to a preparation method and application of a graphite-phase carbon nitride-based heterogeneous Fenton-like catalyst. The graphite-phase carbon nitride-based heterogeneous Fentoncatalyst is a metal-doped g-C3N4 composite material. The preparation method comprises the following steps: proportionally mixing metal salt and urea without any pretreatment to the metal salt and theurea, adding an obtained mixture into a ceramic crucible, wrapping the mouth of the crucible with aluminum foil, covering with a crucible cover, putting into a muffle furnace, and calcinating in a programmed heating manner without need of any inert protective gas during calcination; and naturally cooling a calcinated product to room temperature, then taking out and grinding to obtain the needed material. The graphite-phase carbon nitride-based heterogeneous Fenton catalyst is applied to organic wastewater treatment. By a one-step synthesis method of the metal-doped g-C3N4 Fenton catalyst, various precursors are not required to be dissolved in advance and then dried by freezing or evaporating so as to be uniformly mixed, and a metal element can be uniformly doped only by controlling a heating program, so that the obtained material has relatively high ability of catalyzing PMS to degrade PPCPs pollutants in water.
Owner:TONGJI UNIV

Single-cell-thickness nano porous cobalt oxide nanosheet array electrocatalytic material

A single-cell-thickness nano porous cobalt oxide nanosheet array electrocatalytic material is characterized in that a metal-doped cobalt oxide primary nanosheet array is perpendicularly grown on a conductive substrate, a porous nanosheet is obtained from each primary nanosheet, and the nanosheets are of porous structure; the material is used as an electrocatalyst for oxygen evolution reaction; the material also has excellent hydrogen evolution performance and may function as a bifunctional catalyst for an alkaline full-decomposition water system. The invention has the advantages that the material can effectively reduce overpotential and peaking potential of oxygen evolution reaction, increase conversion rate of single cobalt atoms and operate stably and continuously in a strong alkali environment; the material has excellent oxygen evolution reaction performance and can be applied as an anode and cathode of a full-decomposition water system, effectively reducing trough voltage; the material is simple to prepare, convenient to operate, low in cost and environment-friendly, and new idea and strategy are provided for the guide design and performance optimization of the bifunctional catalyst for the full-decomposition water system.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products