Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

212 results about "Optical resonance" patented technology

Encapsulated nanoparticles for the absorption of electromagnetic energy

Composite materials that can be used to block radiation of a selected wavelength range or provide highly pure colors are disclosed. The materials include dispersions of particles that exhibit optical resonance behavior, resulting in the radiation absorption cross-sections that substantially exceed the particles' geometric cross-sections. The particles are preferably manufactured as uniform nanosize encapsulated spheres, and dispersed evenly within a carrier material. Either the inner core or the outer shell of the particles comprises a conducting material exhibiting plasmon (Froehlich) resonance in a desired spectral band. The large absorption cross-sections ensure that a relatively small volume of particles will render the composite material fully opaque (or nearly so) to incident radiation of the resonance wavelength, blocking harmful radiation or producing highly pure colors. The materials of the present invention can be used in manufacturing ink, paints, lotions, gels, films, textiles and other solids having desired color properties. The materials of the present invention can be used in systems consisting of reflecting substances such as paper or transparent support such as plastic or glass films. The particles can be further embedded in transparent plastic or glass beads to ensure a minimal distance between the particles.
Owner:KUEHNLE MANFRED R

Reflectivity and transmittance comprehensive measurement method based on pulse laser light source

The invention relates to a reflectivity and transmittance comprehensive measurement method based on a pulse laser light source. The method includes the steps that a pulse laser light beam is split into a reference light beam and a detection light beam, the reference light beam is focused on a photoelectric detector for direct detection, and the detection light beam is injected into an optical resonance cavity. When an optical element with reflectivity larger than 99% is measured, a pulsed light cavity ring-down technology is adopted, ring-down time tau 0 of an output signal of the initial optical resonance cavity and ring-down time tau 1 of an output signal of the optical resonance cavity after the optical element to be detected is installed in the optical resonance cavity are measured, and reflectivity R of the optical element to be detected is obtained through calculation. When the value of R is smaller than 99%, a spectrophotometry is used for measuring the reflectivity of the optical element to be detected. An output cavity lens of the optical resonance cavity is moved away, detection light reflected from the optical element to be detected is focused on the photoelectric detector for detection, the light intensity signal ratio of the detection light beam and the reference light beam is recorded, and the reflectivity R of the optical element to be detected is obtained through calibration.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI

Microresonator-based high-performance high-pressure sensor and system

An optically-powered integrated microstructure pressure sensing system for sensing pressure within a cavity. the pressure sensing system comprises a pressure sensor having an optical resonant structure subject to the pressure within the cavity and having physical properties changing due to changing pressures within the cavity. A substrate supports the optical resonant structure. An input optical pathway evanescently couples light into the optical resonant structure. An output optical pathway collects light from the optical resonance structure. A light source delivers a known light input into the input optical pathway whereby the known light input is evanescently coupled into the optical resonant structure by the input optical pathway and a portion of such light is collected from the optical resonant structure by the output optical pathway. A light detector receives the portion of the light collected from the optical resonant structure, and generates a light signal indicative of such portion of the light collected from the optical resonant structure. A temperature compensation sensor generates a temperature signal indicative of the temperature near the optical resonant structure. A spectrum detection device receives the light signal and temperature signal. The spectrum detection device analyzing the light signal and the temperature signal with a detection algorithm to generating a pressure signal indicative of the pressure within the cavity.
Owner:FLIR DETECTION

Tunable wave length selection/locking light dense wave division complex combining wave/channel splitting filter

The invention is a tunable wavelength selecting / locking optical dense wave division multiplex wave combining / separating device, including an input port and eight wave separation output ports, two wavelength tuning selection combining components, and the wavelength locking control structure includes optical-fiber coupler, optical FP etalon, fast wavelength tuning filter, two fast photoelectric conversion probes, and differential amplifier tracking signal processor. The wavelength locking control structure collects and processes two optical signals of a primary optical path and controls the wavelength tuning selection combining components in the primary optical path by circuit feedback. The wavelength tuning selection combining components are packaged with many optical resonance cavities in parallel on an optical shared surface, adopt the electrooptical effect of electrooptical polymer film and the multi-reflection coherence theory of optical resonance cavities to form tuned filtering characteristic, making the output of each wave separation port of the multiplexer meet the design requirements on wavelength selection and wideband tuning, and it makes locking control on the central wavelength of each channel, stable and reliable.
Owner:SHANGHAI JIAO TONG UNIV

Resonance optic gyro based on digital phase oblique wave frequency shift technology

The invention discloses a resonance optic gyro based on digital phase oblique wave frequency shift technology. The resonance optic gyro comprises an optical system composed of a tunable laser, an optical shunt, two phase demodulators, an optical resonance cavity and a photoelectric conversion module, and a processing circuit composed of two demodulation modules, two modulation signal generator modules, a frequency shift feedback control module and a feedback locking module, wherein a first signal extracted by the first demodulation module is controlled by the feedback locking module to adjust the central frequency of the tunable laser, and a second signal extracted by the second demodulation module is subjected to second frequency locking by the frequency shift feedback control module; and the output of the frequency shift feedback control module serves as the rotation output of the gyro. According to the invention, a resonance optic gyro structure is constructed, the digital phase oblique wave frequency shift technology is adopted in a second closed loop of the resonance optic gyro structure, the resonance optic gyro structure is favorable for miniaturization and integration of a system, improving the linearity and increasing the dynamic range of the system, and reducing reciprocity noise in the system.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products