Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1407results about "Scanning probe techniques" patented technology

Apparatus for inspection with electron beam, method for operating same, and method for manufacturing semiconductor device using former

A substrate inspection apparatus 1-1 (FIG. 1) of the present invention performs the following steps of: carrying a substrate “S” to be inspected into an inspection chamber 23-1 maintaining a vacuum in said inspection chamber; isolating said inspection chamber from a vibration; moving successively said substrate by means of a stage 26-1 with at least one degree of freedom; irradiating an electron beam having a specified width; helping said electron beam reach to a surface of said substrate via a primary electron optical system 10-1; trapping secondary electrons emitted from said substrate via a secondary electron optical system 20-1 and guiding it to a detecting system 35-1; forming a secondary electron image in an image processing system based on a detection signal of a secondary electron beam obtained by said detecting system; detecting a defective location in said substrate based on the secondary electron image formed by said image processing system; indicating and/or storing said defective location in said substrate by CPU 37-1; and taking said completely inspected substrate out of the inspection chamber. Thereby, the defect inspection on the substrate can be performed successively with high level of accuracy and efficiency as well as with higher throughput.
Owner:EBARA CORP

Scanning Probe Microscope, Nanomanipulator with Nanospool, Motor, nucleotide cassette and Gaming application

This invention has applications as a scanning probe microscope/nanomanipulator with consumer gaming applications. An integrated compound lever cantilever which can function simultaneously as both a sample substrate actuator and probe tip scanner actuator for modulation of one or more probe tip. In one embodiment a piezoelectric multimorph MEMS structure is fabricated which serves as a Scanning Probe Microscope cantilever probe tip scanner and allows for the substrate to be moved in more than 1 Degree of freedom with subnanometer resolution. Nanomanipulation means such as nanotweezer, nanopore and nanomachine embodiments are possible uses for the device in addition to data storage. Parallel array operation of many sets of cantilevers is a preferred embodiment which can be used as a nanoscale manipulation and fabrication means. In addition an embodiment where the actuation effects of the device are used to propel the scanner can allow for a programmable drivable MEMS/NEMS based autonomous or semi-autonomous robotic scanner, manipulator and assembler. The device has embodiments where it is essentially a planarized MEMS/NEMS derivative version of a Besocke type scanner. The invention also discloses uses for scanning probe microscopes and nanomanipulators as means for gaming systems, erector set and chemistry kit for entertainment and educational applications. Other applications include rotational actuation, linear motion and spooling of material on rotational bodies through coordination of the actuator probe or probes.
Owner:ZORN MIGUEL

Apparatus for inspection with electron beam, method for operating same, and method for manufacturing semiconductor device using former

A substrate inspection apparatus 1-1 (FIG. 1) of the present invention performs the following steps of: carrying a substrate “S” to be inspected into an inspection chamber 23-1; maintaining a vacuum in said inspection chamber; isolating said inspection chamber from a vibration; moving successively said substrate by means of a stage 26-1 with at least one degree of freedom; irradiating an electron beam having a specified width; helping said electron beam reach to a surface of said substrate via a primary electron optical system 10-1; trapping secondary electrons emitted from said substrate via a secondary electron optical system 20-1 and guiding it to a detecting system 35-1; forming a secondary electron image in an image processing system based on a detection signal of a secondary electron beam obtained by said detecting system; detecting a defective location in said substrate based on the secondary electron image formed by said image processing system; indicating and / or storing said defective location in said substrate by CPU 37-1; and taking said completely inspected substrate out of the inspection chamber. Thereby, the defect inspection on the substrate can be performed successively with high level of accuracy and efficiency as well as with higher throughput.
Owner:EBARA CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products