Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30results about How to "Less aberration" patented technology

Wearable display apparatus

Provided are a wearable display device and a light guide element thereof, the display device including: a display element configured to project a first light forming a virtual image; and a light guide element configured to guide the first light from the display element and a second light input from outside of the wearable display device to a predetermined position. The light guide element includes: a first optical surface facing the display element; a second optical surface and a third optical surface configured to reflect the first light input through the first optical surface; and a fourth optical surface configured to reflect the reflected first light to the predetermined position. The first to third optical surfaces are flat surfaces, and the fourth optical surface is a rotationally asymmetric reflective surface.
Owner:SAMSUNG ELECTRONICS CO LTD

Ultra wide angle imaging optical system, ultra wide angle imaging lens device, and image sensing apparatus

An ultra wide angle imaging optical system includes, in order from an object side, a first lens group, an aperture stop, and a second lens group. The first lens group includes, in order from the position closest to the object side, a negative meniscus lens element convex to the object side, a negative lens element, and a negative lens element. The second lens group includes a plurality of positive lens elements. The first lens group and the second lens group each includes at least one anamorphic surface having different optical powers with respect to a first section extending in a first direction on a flat plane substantially orthogonal to an optical axis, and with respect to a second section extending in a second direction substantially orthogonal to the first direction. The first lens group includes the lens element satisfying the following conditional formula (1):−0.6<(Ph−Pv)*(fh+fv)<−0.1  (1)wherePh: an optical power in the first direction where a viewing angle is large;Pv: an optical power in the second direction where the viewing angle is small;fh: a focal length in the first direction with respect to the entirety of the optical system; andfv: a focal length in the second direction with respect to the entirety of the optical system.
Owner:KONICA MINOLTA OPTO +3

Reflection optical system and projection display apparatus using the same

A reflection optical system placed between a light valve 5 and a screen 4, wherein curved surfaces are only three reflection surfaces of first to third mirrors 1 to 3, and satisfies the following: (1) θL<20 degrees, (2) 25 degrees<θUL<55 degrees, (3) 20 degrees<θM1<55 degrees, (4) 15 degrees<θM2<50 degrees, (5) 8 degrees<θM3<30 degrees, (6) θL<15 degrees, (7) 30 degrees<θUL and (8) 7.5 degrees<|θF|, where θL: minimum angle which a light beam of pupil center forms with respect to the enlargement side image surface; θUL: difference between maximum and minimum angles which a light beam of pupil center forms with respect to the enlargement side image surface; θM1, θM2 and θM3: deviation angles of the light beam of pupil center passing the center of the reduction-side image surface in first to third mirrors 1 to 3; and θF: reduction-side pupil divergent angle.
Owner:FUJIFILM CORP

Means for Controlling the Progression of Myopia

A contact lens (10) for use in controlling or retarding the progression of myopia in an eye has a central optical zone (20) approximating the normal diameter of the pupil of the eye (22) that gives clear central vision at distance for the wearer. An annular peripheral optical zone 24 that is substantially outside the diameter of the pupil is formed around the central optical zone (20) with greater refractive power than that of the central zone (22) so that oblique rays entering the eye through the peripheral optical zone (24) will be brought to focus at a focal plane that is substantially on or anterior to the peripheral region of the retina. Preferably, the rear surface (16) of the lens is shaped to conform to the cornea of the eye and the front surface (18) of the lens (10) is shaped to provide—in conjunction with the rear surface (16)—the desired optical properties of the central and peripheral optical zones. The front surface (18) is also preferably contoured to form a smooth transition (30) between the junction of the central optical zone (20) and the peripheral optical zone (24), with or without designed optical properties such as progressive power.
Owner:THE VISION CRC LTD

Optical Imaging Assembly

An optical imaging module used in portable devices is described. In order from an object side to an image side, the module comprises an aperture stop, a first lens element with positive refractive power having a convex object-side surface and a convex image-side surface; a second lens element with negative refractive power having a concave image-side surface and a object-side surface being convex in a peripheral region; a third lens element with refractive power; a fourth lens element with refractive power having a convex image-side surface; a fifth lens element with positive refractive power having an image-side surface being concave in a paraxial region and convex in a peripheral region; and wherein the optical imaging module used in the portable devices satisfies: 0.052 mm≦D≦0.082 mm, where D represents a maximum effective focus shifts range under all the defocus curves at 0.4 modulus of the OTF (optical transfer function).
Owner:VISTA OPTRONICS

Wearable display apparatus having a light guide element that guides light from a display element and light from an outside

Provided are a wearable display device and a light guide element thereof, the display device including: a display element configured to project a first light forming a virtual image; and a light guide element configured to guide the first light from the display element and a second light input from outside of the wearable display device to a predetermined position. The light guide element includes: a first optical surface facing the display element; a second optical surface and a third optical surface configured to reflect the first light input through the first optical surface; and a fourth optical surface configured to reflect the reflected first light to the predetermined position. The first to third optical surfaces are flat surfaces, and the fourth optical surface is a rotationally asymmetric reflective surface.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products