Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

99results about How to "Improve quality resolution" patented technology

Apparatus for and method of noise suppression and dithering to improve resolution quality in a digital RF processor

A novel apparatus for and a method of noise and spurious tones suppression in a digital RF processor (DRP). The invention is well suited for use in highly integrated system on a chip (SoC) radio solutions that incorporate a very large amount of digital logic circuitry. The noise suppression scheme eliminates the noise caused by various on chip interference sources transmitted through electromagnetic, power, ground and substrate paths. The noise suppression scheme permits an all digital PLL (ADPLL) to operate in such a way to avoid generating the spurs that would normally be generated from the injection pulling effect of interfering sources on the chip. The frequency reference clock is retimed to be synchronous to the RF oscillator clock and used to drive the entire digital logic circuitry of the DRP. This ensures that the different clock edges throughout the system will not exhibit mutual drift. A method of improving the resolution quality of a time to digital converter within the ADPLL is also taught. The method dithers the reference clock by passing it through a delay circuit that is controlled by a sigma-delta modulator. The dithered reference clock reduces the affect on the phase noise at the output of the ADPLL due to ill-behaved quantization of the TDC timing estimation.
Owner:TEXAS INSTR INC

Mass spectrometer

In the mass spectrometer of the present invention, a flight space is provided before the mass analyzer, and the flight space includes a loop orbit on which ions fly repeatedly. While ions fly on the loop orbit repeatedly, ion selecting electrodes placed on the loop orbit selects object ions having a specific mass to charge ratio in such a manner that, for a limited time period when the object ions are flying through the ion selecting electrodes, an appropriate voltage is applied to the ion selecting electrodes to make them continue to fly on the loop orbit, but otherwise to make or let other ions deflect from the loop orbit. If ions having various mass to charge ratios are introduced in the loop orbit almost at the same time, the object ions having the same mass to charge ratio continue to fly on the loop orbit in a band, but ions having mass to charge ratios different from that are separated from the object ions while flying on the loop orbit repeatedly. Even if the difference in the mass to charge ratio is small, the separation becomes large when the number of turns of the flight becomes large. After such a separation is adequately achieved, the ion selecting electrodes can select the object ions with high selectivity, or at high mass resolution. By adding dissociating means, fragment ions originated only from the selected object ions can be analyzed, which enables the identification and structural analysis of the sample at high accuracy.
Owner:SHIMADZU CORP

Mass spectrometer

In the mass spectrometer of the present invention, a flight space is provided before the mass analyzer, and the flight space includes a loop orbit on which ions fly repeatedly. While ions fly on the loop orbit repeatedly, ion selecting electrodes placed on the loop orbit selects object ions having a specific mass to charge ratio in such a manner that, for a limited time period when the object ions are flying through the ion selecting electrodes, an appropriate voltage is applied to the ion selecting electrodes to make them continue to fly on the loop orbit, but otherwise to make or let other ions deflect from the loop orbit. If ions having various mass to charge ratios are introduced in the loop orbit almost at the same time, the object ions having the same mass to charge ratio continue to fly on the loop orbit in a band, but ions having mass to charge ratios different from that are separated from the object ions while flying on the loop orbit repeatedly. Even if the difference in the mass to charge ratio is small, the separation becomes large when the number of turns of the flight becomes large. After such a separation is adequately achieved, the ion selecting electrodes can select the object ions with high selectivity, or at high mass resolution. By adding dissociating means, fragment ions originated only from the selected object ions can be analyzed, which enables the identification and structural analysis of the sample at high accuracy.
Owner:SHIMADZU CORP

Time of flight mass analyzer having improved mass resolution and method of operating same

A time-of-flight mass analyzer having improved mass resolution without mandating a corresponding increase in instrument size is disclosed. The analyzer includes an ionizer that generates the ions that are to be analyzed. These ions are introduced to an ion flight path, at least a portion of which is aligned with a linear axis. The portion of the ion path that is aligned with the linear axis includes a region having a substantially static electric field with non-linear equipotential field lines that circumvent the linear axis. Ions either enter the substantially static electric field with a velocity component that is directed along the linear axis or have such a velocity component imparted to them once they have been trapped in the substantially static electric field. As a result of the combined effects of the linear velocity component and the non-linear field, the ions make multiple circumnavigating trips about the linear axis as they concurrently travel in the direction of the linear axis. Consequently, the ions travel along a significantly longer flight path when compared to a flight path in which the ions solely travel linearly along the axis. In one embodiment, the concurrent motions of the ions in the direction of the linear axis and along the equipotential field lines about the linear axis define a substantially helical ion trajectory. This provides a larger distance along which ions having close, but different, m / z may be separated in time thereby providing an instrument having higher resolution.
Owner:BECKMAN COULTER INC

Mass spectrometer with an ion trap

In the mass spectrometer of the present invention, the controller controls the time of changing the voltage applied to the electrode or electrodes of the ion trap from the ion trapping voltage to the ion ejecting voltage according to the polarity of the electric charge of ions to be ejected from the ion trap. Since positively charged ions and negatively charged ions move in the same direction if the phases of the RF voltage for generating the ion trapping electric field in the ion trap are reversed, the controller may reverse the phase of the RF voltage for trapping ions according to the polarity of the electric charge of ions when the ion ejecting time is fixed, irrespective of the polarity of the electric charge of ions to be ejected. Alternatively, the controller may change the ion ejecting time by half a cycle of the RF voltage depending on the polarity of the electric charge of ions when the ion trapping RF voltage is maintained the same. Owing to such a control, the ions are ejected when they are converging or are converged in the ion trap irrespective of the polarity of the electric charge of the ions. This minimizes the variation in the starting point of ions ejected from the ion trap, and reduces errors in their flight time in the subsequent TOF-MS, whereby the accuracy of the mass analysis is improved and the mass resolution is enhanced.
Owner:SHIMADZU CORP

Mass-analyzing method and mass spectrometer

In a time-of-flight spectrum obtained when the overtaking of ions of different kinds has occurred, mass-to-charge ratios M1, M2, and M3 are computed with a predetermined conversion formula by using a plurality of assumed numbers of turns for one peak. Then, the flight times Tf1, Tf2, and Tf3 for an overtakingless measurement are computed by using an inverse conversion formula. If peaks respectively corresponding to the flight times Tf1, Tf2, and Tf3 for an overtakingless measurement exist on an overtakingless time-of-flight spectrum, their intensities i1, i2, and i3 are obtained. Then, the intensity Ia of the original peak is distributed to the mass-to-charge ratios M1, M2, and M3 in accordance with the intensity ratio. The same intensity distribution processing is performed for all or selected plural peaks. The intensities assigned to the same mass-to-charge ratio are integrated. A mass spectrum is created for each of a plurality of overtaking time-of-flight spectra obtained by changing the timing of deviation of ions from a loop orbit, and the plurality of mass spectra are displayed in a window of a display unit so that they can be compared. Thereby, the probability of missing an ion due to the ion deviation timing can be reduced.
Owner:SHIMADZU CORP

Device and method for detecting mass concentration of particulate matter

The invention provides a device and a method for detecting the mass concentration of a particulate matter, and relates to the technical field of concentration detection. The device for detecting the mass concentration of the particulate matter comprises a gas channel to be measured, a gas flow driver, and a light scattering measurement unit, a flow metering unit and a matched control processor which are arranged on the gas channel to be measured, and also comprises a micro-resonance measurement unit arranged on the same gas channel to be measured together with the light scattering measurementunit, the micro-resonance measurement unit includes a choked flow filter membrane arranged on the gas channel to be measured, and a frequency detector and a control circuit which are connected with the choked flow filter membrane, and the signal output end of the frequency detector is connected with the control processor. The device and the method, which adopt a micro-resonance process and a lightscattering measurement process to carry out fusion calculation, have the advantages of high mass resolution, fast response speed, suitableness for various gas channels, overcoming of the influences of the physical, chemical and flow characteristics of particles on the simple light scattering measurement process, and accuracy and reliability in the measurement result.
Owner:HEILONGJIANG UNIVERSITY OF SCIENCE AND TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products