Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

412results about "Spectrometer circuit arrangements" patented technology

Apparatus and method for identifying peaks in liquid chromatography/mass spectrometry data and for forming spectra and chromatograms

Chromatograms and mass spectra produced by an LC / MS system are analyzed by creating a two-dimensional data matrix of the spectral and chromatographic data. The two-dimensional matrix can be created by placing the spectra generated by the mass spectrometer portion of the LC / MS system in successive columns of the data matrix. In this way, the rows of the data matrix correspond to chromatographic data and the columns of the data matrix correspond to the spectra. A two-dimensional filter is specified and applied to the data matrix to enhance the ability of the system to detect peaks associated with ions. The two-dimensional filter is specified according to desired criteria. Rank-1 and rank-2 filters can be specified to improve computational efficiency. One method of applying the two-dimensional filter is through convolution of the data matrix with the two-dimensional filter to produce an output data matrix. Peaks corresponding to detected ions are identified in the output data matrix. Parameters of the peaks are determined and stored for later processing including quantitation, or simplification of chromatograms or spectra by, for example, identifying peaks associating with ions having retention times falling within a specified retention time window or having mass-to charge ratios falling within a specified mass-to-charge ratio window.
Owner:WATERS TECH CORP

Method of automatically calibrating electronic controls in a mass spectrometer

The present invention provides methods and electronic circuits for a chemical analyzer, for example, a mass spectrometer, which provide generated signals that are maintained to a required level of precision. A user may specify the required precision for the signals which operate the spectrometer and may specify the required precision for the mass analysis, either explicitly or by choosing a predefined configuration. The spectrometer will then generate the signals to the required precision despite changes in operating conditions, environmental conditions, component aging and degradation, or other nonfailure effects that otherwise affect analyzer calibration and signal output. The electronic circuits incorporate signal monitoring to maintain closed-loop signal control. The closed-loop control includes a feedback path which may include discrete components and may include software enabling a processor to adjust the generated signals to maintain the required precision of the signals and analysis. Further, the spectrometer may monitor signals and analyze and store data in order to predict future performance, including precision, analysis limitations, impending component degradation or failure, or another parameter associated with a component or signal of the spectrometer. Specifically, a range for a particular parameter may be specified and a indication provided to a user when the parameter exceeds the specified range.
Owner:FLIR DETECTION

Method of automatically calibrating electronic controls in a mass spectrometer

The present invention provides methods and electronic circuits for a chemical analyzer, for example, a mass spectrometer, which provide generated signals that are maintained to a required level of precision. A user may specify the required precision for the signals which operate the spectrometer and may specify the required precision for the mass analysis, either explicitly or by choosing a predefined configuration. The spectrometer will then generate the signals to the required precision despite changes in operating conditions, environmental conditions, component aging and degradation, or other nonfailure effects that otherwise affect analyzer calibration and signal output. The electronic circuits incorporate signal monitoring to maintain closed-loop signal control. The closed-loop control includes a feedback path which may include discrete components and may include software enabling a processor to adjust the generated signals to maintain the required precision of the signals and analysis. Further, the spectrometer may monitor signals and analyze and store data in order to predict future performance, including precision, analysis limitations, impending component degradation or failure, or another parameter associated with a component or signal of the spectrometer. Specifically, a range for a particular parameter may be specified and a indication provided to a user when the parameter exceeds the specified range.
Owner:FLIR DETECTION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products