Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

63results about How to "Maximizing intensity" patented technology

Hard X-Ray Photoelectron Spectroscopy Apparatus

InactiveUS20160327499A1Increase productionIncrease photoelectron collection efficiencyMaterial analysis by measuring secondary emissionHard X-raysFocal position
[Problem]
The present invention aims to solve the problems that size of X-ray monochromater crystal assembly is restricted and the vacuum of the X-ray source and the vacuum of the analysis chamber cannot be separated.
[Solution]
A hard X-ray photoelectron spectroscopy apparatus comprises an X-ray source, an analyzer, a sample manipulator, an analysis chamber, and vacuum evacuation systems, wherein, in a three-dimensional space defined by a XYZ rectangular coordinate axis system, a plate-like sample is arranged to be rotatable around the Z-axis by said sample manipulator (2), wherein said X-ray source comprises an electron gun (3b) which accelerates and focuses electrons, a target which is irradiated with the electrons accelerated and focused by the electron gun to generate an X-ray, monochromater crystal assembly, wherein the monochromater crystal assembly meets the Bragg condition of X-ray diffraction in X-Y plane to diffract/reflect and monochromatize the X-ray generated in said target and extract characteristic X-rays only, and on the other hand, the electron-beam-irradiation position on the target-center of the monochromater crystal assembly-center of the sample is arranged on the Rowland circle to minimize focusing aberration to the sample, the monochromater crystal assembly is located on a circle having a radius twice as large as that of the Rowland circle in a X-Y plane, preferably electron-beam-irradiation position on said target and the center of the sample are located on each of two focuses of an ellipse coming in contact with said Rowland circle in the center of the monochromater crystal assembly, said monochromater crystal assembly has a toroidal surface in Z axial direction acquired by rotating said ellipse coming in contact with said Rowland circle around a straight line connecting the electron-beam-irradiation position on said target and the center of the sample, and, a vacuum vessel for installing these components, wherein the monochromater crystal assembly used for monochromatization with diffraction and reflection of said X-ray source is located on the Rowland circle together with said target and said sample to meet the condition that the dispersed X-ray beam concentrates on the surface of the sample with the minimum aberration, wherein said Rowland circle is located to be orthogonal to the surface of the sample, wherein an optical axis of said analyzer is placed to be perpendicular (in X axial direction) to the incident direction (in Y axial direction) of the X-ray or within a range of ±36 degree angle in a X-Y plane and within a range of ±49 degree angle in a X-Z plane, wherein the sample is such that said X-ray diffracted and reflected by a reflection surface is located on focus positions on the surface of said sample and is obliquely incident on the surface of said sample, so that the spot of said X-ray elongatedly extends along a line in substantially parallel to Y axis (substantially perpendicular to X axis), and wherein an aperture of a slit provided at the entrance of said analyzer is arranged in parallel to a direction where said X-ray spot on the sample surface elongatedly extends.
Owner:KOBAYASHI KEISUKE +1

Optical sensor for contactless pressure measurements

An optical sensor for pressure measurements is described which comprises a sensor head (8) including: -a diaphragm (9) having a first surface (91) in contact with a fluid of which the pressure has to be measured and a second surface (92) opposite to the first surface, -a body with a tubular cavity (200), -means (92, 10) arranged inside the tubular cavity, associated with the second surface of the diaphragm and movable longitudinally inside said tubular cavity in response to the deformation of the diaphragm, said means including a reflective surface (92, 102), -an end part (12) of waveguide means (4) arranged inside the tubular cavity and having the end surface (11) faced to and not in contact with the reflective surface (92, 102) of said means, said waveguide means being connected to a light source (1) and a receiver (5) respectively to send to said means the light beam (50) deriving from the light source and to collect at the receiver the light beam (60) reflected from the reflective surface of said means, the intensity of the collect light beam being dependent on the distance (D) between the end surface of the end part of waveguide means and the reflective surface. The end surface (11) of the end part (12) of waveguide means is tilted with respect to a plane orthogonal (B) to the optic axis (A) of a first angle (α) having a value such that the incident angle (θa) of the light beam deriving from the light source is less than the critical angle (θc-air) between the waveguide means and the air and greater than the critical angle (θc) of the waveguide means, and the reflective surface (102, 92) of said means is tilted with respect said plane (B) orthogonal to the optic axis (A) of a second angle (β) equal to the escaping angle of the light beam from said end surface (11) of the end part (12) of waveguide means.
Owner:LASERPOINT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products