Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

142 results about "Autoignition temperature" patented technology

The autoignition temperature or kindling point of a substance is the lowest temperature at which it spontaneously ignites in normal atmosphere without an external source of ignition, such as a flame or spark. This temperature is required to supply the activation energy needed for combustion. The temperature at which a chemical ignites decreases as the pressure or oxygen concentration increases. It is usually applied to a combustible fuel mixture.

Flameless combustor process heater

A process heater is provided utilizing flameless combustion, the process heater having: an oxidation reaction chamber, the oxidation reaction chamber having an inlet for oxidant, an outlet for combustion products, and a flow path between the inlet and the outlet; a fuel conduit capable of transporting a fuel mixture to a plurality of fuel nozzles within the oxidation reaction chamber, each nozzle providing communication from within the fuel conduit to the oxidation chamber, with each nozzle along the flowpath between the inlet and the outlet; a preheater in communication with the oxidation chamber inlet, the preheater capable of increasing the temperature of the oxidant to a temperature resulting in the combined oxidant and fuel from the fuel nozzle closest to the oxidation chamber inlet being greater than the autoignition temperature of the combined oxidant and fuel from the fuel nozzle closest to the oxidation chamber inlet; and a process chamber in a heat exchange relationship to the oxidation reaction chamber wherein the heat transferred from the oxidation section does not causes the temperature of the mixture within the oxidation reaction chamber in the vicinity of each fuel nozzle to decrease below the auto ignition temperature of the combined mixture in the oxidation chamber in the vicinity of that fuel nozzle.
Owner:SHELL OIL CO

Low emission power plant and method of making same

A low emission power generating apparatus which comprises a modified two-stroke diesel engine component and a modified turbocharger component which has a relatively low aspect ratio. The diesel engine component is a modification of a conventional two-stroke diesel engine design and includes an exhaust valve cam of unique design that has a cam profile which results in a later than-normal exhaust valve opening and an earlier-than-normal valve closing so that the time during which the exhaust valve remains open is shorter than normal, thereby causing a substantially greater volume of residual gases to remain in the combustion chamber following the scavenge stroke. This increase in the volume of the residual exhaust gases within the chamber leads to an increase in compression temperature and effectively increases the compression ratio and consequently the compression pressure. Because of the heat absorption capacity of these residual exhaust gases, the exhaust gases remaining in the chamber following the scavenge stroke tend to absorb combustion heat and thereby effectively reduce the peak combustion temperature. This reduction in peak combustion temperature advantageously results in the lower than normal formation of nitrogen oxide (NOx) and, therefore, allows advancement of the injection timing, while still maintaining the NOx emissions coming from the engine lower than those legislatively mandated. Advantageously, the advance in injection timing, which increases NOx emissions, by definition has the effect of also reducing particulate matter emissions. Thus, by increasing the volume of residual exhaust gases within the cylinder, substantial particulate matter emission reductions can be achieved, while at the same time maintaining NOx emissions well below mandated limits. The modified turbocharger component provides an additional charge of oxygen-rich air into the combustion chamber which effectively increases the compression pressure, which, in turn, leads to an earlier start of combustion because of the combustible mixture reaching its auto-ignition temperature at an earlier point in the cycle. This phenomenon leads to more thorough combustion of the fuel and also generally leads to higher exhaust temperatures. Higher exhaust temperatures, in turn, lead to a greater oxidation rate of the soluble organic fraction thus lowering the level of emission from the engine of undesirable particulate matter.
Owner:CLEAN CAM TECH SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products