Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

58results about How to "Reduce the production of nitrogen oxides" patented technology

Control device for internal combustion engine and measuring device of mass flow rate of NOx recirculated to intake passage with blowby gas

A mass flow rate of NOx which is recirculated to an intake passage with a blowby gas is obtained with high precision, and based on the result, a state of an internal combustion engine can be accurately diagnosed. A control device for an internal combustion engine of the present invention measures a NOx concentration in an intake passage downstream from a position where the blowby gas is recirculated, and similarly measures an oxygen concentration in the intake passage downstream from the aforesaid position. Further, the control device measures a mass flow rate of fresh air taken into the intake passage. The control device calculates a mass flow rate of the blowby gas recirculated to the intake passage from the oxygen concentration and the mass flow rate of the fresh air. Next, the control device calculates a mass flow rate of all gases in the intake passage from the mass flow rate of the fresh air and the mass flow rate of the blowby gas. Subsequently, the control device calculates the mass flow rate of NOx in the aforesaid intake passage from the mass flow rate of all the gases and the NOx concentration. The present control device diagnoses the state of the internal combustion engine based on the mass flow rate of NOx thus calculated.
Owner:TOYOTA JIDOSHA KK

CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE AND MEASURING DEVICE OF MASS FLOW RATE OF NOx RECIRCULATED TO INTAKE PASSAGE WITH BLOWBY GAS

A mass flow rate of NOx which is recirculated to an intake passage with a blowby gas is obtained with high precision, and based on the result, a state of an internal combustion engine can be accurately diagnosed. A control device for an internal combustion engine of the present invention measures a NOx concentration in an intake passage downstream from a position where the blowby gas is recirculated, and similarly measures an oxygen concentration in the intake passage downstream from the aforesaid position. Further, the control device measures a mass flow rate of fresh air taken into the intake passage. The control device calculates a mass flow rate of the blowby gas recirculated to the intake passage from the oxygen concentration and the mass flow rate of the fresh air. Next, the control device calculates a mass flow rate of all gases in the intake passage from the mass flow rate of the fresh air and the mass flow rate of the blowby gas. Subsequently, the control device calculates the mass flow rate of NOx in the aforesaid intake passage from the mass flow rate of all the gases and the NOx concentration. The present control device diagnoses the state of the internal combustion engine based on the mass flow rate of NOx thus calculated.
Owner:TOYOTA JIDOSHA KK

Method for decreasing nitrogen oxides of a pulverized coal boiler using burners of internal combustion type

A method for decreasing nitrogen oxides of a pulverized coal boiler using burners (2) of internal combustion type comprising: designing or changing all or part of burners of the pulverized coal boiler as internal combustion type burners (2), in which the ignition sources may be plasma generators (1) or ignition devices such as small oil guns etc., and the power thereof can be adjusted for controlling the ignition intensity in the burners (2). The burners (2) are interiorly divided into several stage combustion chambers (5) and are provided with pulverized coal concentrators (4) which do deep fuel staging in the burners (2). During the operation of the boiler, the ignition sources always keep in a working state, and the pulverized coal in the burners (2) is ignited stage by stage and is burnt in advance; decreasing the secondary air amount in the primary combustion zone (22) so that the primary combustion zone (22) is in a relatively strong reducing atmosphere and a high temperature and oxygen-deficient condition for inhibiting the generation of NOx is created; and supplying the remaining air from the upper of furnace of the boiler in the form of over-fire air, so that a deep air staging is carried out in the total furnace. Thus, the NOx generation of combustion can be effectively controlled on the premise of not decreasing the boiler efficiency.
Owner:YANTAI LONGYUAN POWER TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products