Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

781 results about "Compressed natural gas" patented technology

Compressed natural gas (CNG) (methane stored at high pressure) is a fuel which can be used in place of gasoline, diesel fuel and propane/LPG. CNG combustion produces fewer undesirable gases than the aforementioned fuels. In comparison to other fuels, natural gas poses less of a threat in the event of a spill, because it is lighter than air and disperses quickly when released. Biomethane – cleaned-up biogas from anaerobic digestion or landfills – can be used.

Integrated hydraulic station

The invention belongs to the technical field of compressed natural gas filling, and particularly relates to an integrated hydraulic station which realizes high integration of an oil tank, plunger pumps, motors, a valve block, a cooler, an instrument and a sensor. The reversing function of hydraulic oil is provided through cooperation of an electro-hydraulic reversing valve and a proximity switch on a hydraulic cylinder, the functions of circulating heating of the low-temperature hydraulic oil, discharging of the high-pressure hydraulic oil and avoiding the hydraulic oil channeling back betweenthe double pumps are realized through cooperation of an unloading valve, a one-way valve and the electro-hydraulic reversing valve in the valve block, the high-pressure difference automatic stop function and the high-pressure gas discharging function are provided, combustible gas leakage and expansion deformation of the oil tank which cannot be recovered caused by high-pressure gas channeling back are avoided, the functions of low oil level monitoring alarm, temperature monitoring alarm and low oil temperature automatic circulating heating before starting of the hydraulic oil tank are provided, a three-way ball valve is adopted to replace an oil return valve block in the aspect of cooling oil return of the hydraulic oil, thus the oil return control function is realize, and the cost and space of the hydraulic station are also reduced.
Owner:JEREH OIL & GAS ENG

Storing, transporting and handling compressed fluids

A container and a method for storage and / or transport of a compressed fluid such as compressed natural gas are provided. The container has a pair of opposing heads and a wall section between the heads, the wall section defining a square cross-section comprising substantially planar sides joined together by rounded corners. The container is designed for the side walls to deflect outwardly while under pressure, but to be supported externally by a support system that restricts outward expansion of the side walls. The support system can be provided as the walls of a cargo hold in a marine or land transport vessel, an ISO shipping container or an underground shaft. Multiple containers can be located side by side in the external support system so that the sides of adjacent containers rest against each other for support while under pressure. In one embodiment, a container comprises an outside tank and a flexible membrane tank inside the outside tank, an annular space being defined in between, where a first fluid is charged into the membrane tank and a second fluid is charged into the annular space in order to discharge the first fluid. In another embodiment, a long tube having a square cross-section is coiled in a support structure and made gas-tight for holding a compressed fluid. The walls of the tube would tend to expand while under pressure, but adjacent coils and the support structure limit the expansion.
Owner:WHITE CHARLES N +1

System and method for cold recovery

A method of cold recovery in a cold compressed natural gas cycle, the method comprising: compressing air; drying air; heat exchanging air with cold compressed natural gas from a storage vessel, in a first heat exchanger, thereby forming cooled air; heat exchanging the cooled air with liquid methane, in a second heat exchanger, such that the cooled air becomes liquid air and the liquid methane becomes methane; heat exchanging the liquid air with natural gas from a pipeline, in a third heat exchanger, such that the natural gas cools to a cold compressed natural gas and the liquid air becomes air in a gaseous state; discharging the air in a gaseous state. A system of cold recovery comprising: an air dryer; an air compressor in fluid communication with the air dryer; a first heat exchanger in fluid communication with the air compressor; a second heat exchanger in fluid communication with the first heat exchanger; a third heat exchanger in fluid communication with the second heat exchanger; a methane expander valve in fluid communication with the second heat exchanger; a fourth heat exchanger in fluid communication with the methane expansion valve; a methane compressor in fluid communication with the second heat exchanger and with the fourth heat exchanger; a natural gas scrubber in fluid communication with a third heat exchanger; a natural gas pipeline in fluid communication with the first heat exchanger; the fourth heat exchanger, and the natural gas scrubber; and a storage vessel in fluid communication with the first heat exchanger, the third heat exchanger, and the fourth heat exchanger.
Owner:EXPANSION ENERGY

Method and device for reutilization of natural gas pipe network pressure energy in gas turbine working domain

The invention relates to a recycling method for natural gas pipe network pressure energy in the gas turbine working field and a device thereof, aiming at solving the problem of the loss of energy in the depressurization of high-pressure natural gas. The technical proposal is that the cold air flow and the hot air flow generated after the high-pressure natural gas is depressurized through a vortex tube are respectively outputted, the cold air flow after absorbing the inverse air in a heat exchanger and the heat of the exhaust gas of the gas turbine and being heated up joins with the hot air flow and enters a combustion chamber of the gas turbine set; the air cooled by the heat exchanger enters a compressor of the gas turbine set for boosting pressure and then is introduced to the combustion chamber of the gas turbine set; in the combustion chamber, the natural gas is combusted with the air to lead the gas turbine to work and drive energy-consumed equipment. The method of the invention selects the vortex tube to complete the depressurization and pressure adjustment of the natural gas and utilizes the low temperature natural gas flow to cool the intake air of the compressor to increase the mass flow of the intake air, thereby greatly increasing the output of the gas turbine and the economy and effectively utilizing the pressure energy.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products