Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

273 results about "Fuel type" patented technology

Gaseous fuel burner

An ejector, such as a venturi, facilitates the delivery of gaseous fuel to the combustion chamber of a burner. A blower forces air through the ejector, and the air flow produces a suction that draws fuel from a fuel inlet to produce a fuel-air mixture. The amount of fuel drawn from the fuel inlet is a function of the air flow such that a substantially constant fuel-air ratio is obtained over a range of air flow rates and temperatures without the need for a separate high-pressure fuel pump. The fuel-air mixture may be provided to a combustion chamber for combustion. Air from the blower may be pre-heated prior to entering the ejector, for example, using a heat exchanger that recovers some of the heat from the combusted fuel-air mixture. Air flow through the ejector may be conditioned, for example, by a swirler, to produce a tangential air flow that can increase fuel flow by increasing air velocity across the fuel inlet and / or produce a swirl-stabilized flame in the combustion chamber. The combusted fuel-air mixture may be provided to a thermal load, such as an external combustion engine. Blower speed may be controlled manually or automatically to control power output. Fuel flow to the ejector can be controlled manually or automatically to control fuel-air ratio. The burner can be configured to operate with multiple fuel types, for example, using a fuel selector with fixed or variable restrictors.
Owner:NEW POWER CONCEPTS

Deployable power supply system

A self-contained conveyable power unit for producing 12V/24V, 110V AC, and 220V AC electricity at a desired location independent of external power sources integrates within one weather-resistant molded nonmetallic material based housing a power generating device of a selectable combination of a renewable energy type (e.g., solar), power management devices, power storage devices and management reporting devices. Additional optional power generating devices, renewable or of traditional fuel type, can be contained within or coupled to the housing. The system includes devices or an array of devices contained within the housing for the storage of electrical power. A device for power management is contained within the housing as is networking equipment of wireless or wired type for remote system observation and reporting. The system and housing are modular and configured to produce power using any combination of renewable and non-renewable energy resources. The conveyable power unit may provide easy access to different types of power outputs and inputs and be coupled with like appliances in a ‘daisy chain’ or network of power. Given its molded composite material construction and scaleable design, the appliance may be readily fabricated in a variety of sizes for varied applications. Further, the molded housing of composite material construction is designed for resistance to the elements, light weight and strength.
Owner:ZEROBASE ENERGY

Gaseous fuel burner

An ejector, such as a venturi, facilitates the delivery of gaseous fuel to the combustion chamber of a burner. A blower forces air through the ejector, and the air flow produces a suction that draws fuel from a fuel inlet to produce a fuel-air mixture. The amount of fuel drawn from the fuel inlet is a function of the air flow such that a substantially constant fuel-air ratio is obtained over a range of air flow rates and temperatures without the need for a separate high-pressure fuel pump. The fuel-air mixture may be provided to a combustion chamber for combustion. Air from the blower may be pre-heated prior to entering the ejector, for example, using a heat exchanger that recovers some of the heat from the combusted fuel-air mixture. Air flow through the ejector may be conditioned, for example, by a swirler, to produce a tangential air flow that can increase fuel flow by increasing air velocity across the fuel inlet and/or produce a swirl-stabilized flame in the combustion chamber. The combusted fuel-air mixture may be provided to a thermal load, such as an external combustion engine. Blower speed may be controlled manually or automatically to control power output. Fuel flow to the ejector can be controlled manually or automatically to control fuel-air ratio. The burner can be configured to operate with multiple fuel types, for example, using a fuel selector with fixed or variable restrictors.
Owner:NEW POWER CONCEPTS

Joint optimized scheduling method for multiple types of generating sets of self-supply power plant of iron and steel enterprise

The invention discloses a joint optimized scheduling method for multiple types of generating sets of a self-supply power plant of an iron and steel enterprise, and belongs to the technical field of energy optimized scheduling of the iron and steel enterprise. Influence of fuel types and gas mixed burning amount on energy consumption of the sets is taken into consideration in construction of a set energy consumption characteristic model, fitting is performed under different gas mixed burning, and the accuracy and representativeness of the model are improved; and influence of the fuel cost, time-of-use power price and surplus gas dynamic change on the generating cost is considered comprehensively in construction of an optimized scheduling model, meanwhile, various constraint conditions including power balance constraint, generating set self-running constraint, purchased power quantity constraint, gas supply constraint, variable load rate limit and the like are considered, and the performability of a generation schedule is guaranteed. Optimization solution is performed on the models by adopting the adaptive particle swarm optimization algorithm, the problems of high dimensionality, nonconvexity, nonlinearity and multiple constraints of the power generation scheduling of the self-supply power plant can be well solved, power production optimization and purchasing rationalization are realized, surplus gas is sufficiently used, and the power supply cost is reduced to the greatest extent.
Owner:AUTOMATION RES & DESIGN INST OF METALLURGICAL IND

Deployable power supply system

InactiveUS7884502B2Catalyzes diffusion and adoptionEasy usabilityBatteries circuit arrangementsPV power plantsRemote systemMetallic materials
A self-contained conveyable power unit for producing 12V / 24V, 110V AC, and 220V AC electricity at a desired location independent of external power sources integrates within one weather-resistant molded nonmetallic material based housing a power generating device of a selectable combination of a renewable energy type (e.g., solar), power management devices, power storage devices and management reporting devices. Additional optional power generating devices, renewable or of traditional fuel type, can be contained within or coupled to the housing. The system includes devices or an array of devices contained within the housing for the storage of electrical power. A device for power management is contained within the housing as is networking equipment of wireless or wired type for remote system observation and reporting. The system and housing are modular and configured to produce power using any combination of renewable and non-renewable energy resources. The conveyable power unit may provide easy access to different types of power outputs and inputs and be coupled with like appliances in a ‘daisy chain’ or network of power. Given its molded composite material construction and scaleable design, the appliance may be readily fabricated in a variety of sizes for varied applications. Further, the molded housing of composite material construction is designed for resistance to the elements, light weight and strength.
Owner:ZEROBASE ENERGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products