Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

185 results about "Parallel array" patented technology

In computing, a group of parallel arrays (also known as structure of arrays or SoA) is a form of implicit data structure that uses multiple arrays to represent a singular array of records. It keeps a separate, homogeneous data array for each field of the record, each having the same number of elements. Then, objects located at the same index in each array are implicitly the fields of a single record. Pointers from one object to another are replaced by array indices. This contrasts with the normal approach of storing all fields of each record together in memory (also known as array of structures or AoS). For example, one might declare an array of 100 names, each a string, and 100 ages, each an integer, associating each name with the age that has the same index.

Parallel Array Architecture for a Graphics Processor

A parallel array architecture for a graphics processor includes a multithreaded core array including a plurality of processing clusters, each processing cluster including at least one processing core operable to execute a pixel shader program that generates pixel data from coverage data; a rasterizer configured to generate coverage data for each of a plurality of pixels; and pixel distribution logic configured to deliver the coverage data from the rasterizer to one of the processing clusters in the multithreaded core array. The pixel distribution logic selects one of the processing clusters to which the coverage data for a first pixel is delivered based at least in part on a location of the first pixel within an image area. The processing clusters can be mapped directly to the frame buffers partitions without a crossbar so that pixel data is delivered directly from the processing cluster to the appropriate frame buffer partitions. Alternatively, a crossbar coupled to each of the processing clusters is configured to deliver pixel data from the processing clusters to a frame buffer having a plurality of partitions. The crossbar is configured such that pixel data generated by any one of the processing clusters is deliverable to any one of the frame buffer partitions.
Owner:NVIDIA CORP

Scanning Probe Microscope, Nanomanipulator with Nanospool, Motor, nucleotide cassette and Gaming application

This invention has applications as a scanning probe microscope/nanomanipulator with consumer gaming applications. An integrated compound lever cantilever which can function simultaneously as both a sample substrate actuator and probe tip scanner actuator for modulation of one or more probe tip. In one embodiment a piezoelectric multimorph MEMS structure is fabricated which serves as a Scanning Probe Microscope cantilever probe tip scanner and allows for the substrate to be moved in more than 1 Degree of freedom with subnanometer resolution. Nanomanipulation means such as nanotweezer, nanopore and nanomachine embodiments are possible uses for the device in addition to data storage. Parallel array operation of many sets of cantilevers is a preferred embodiment which can be used as a nanoscale manipulation and fabrication means. In addition an embodiment where the actuation effects of the device are used to propel the scanner can allow for a programmable drivable MEMS/NEMS based autonomous or semi-autonomous robotic scanner, manipulator and assembler. The device has embodiments where it is essentially a planarized MEMS/NEMS derivative version of a Besocke type scanner. The invention also discloses uses for scanning probe microscopes and nanomanipulators as means for gaming systems, erector set and chemistry kit for entertainment and educational applications. Other applications include rotational actuation, linear motion and spooling of material on rotational bodies through coordination of the actuator probe or probes.
Owner:ZORN MIGUEL

Impinging stream micro-channel reactor and application

ActiveCN101733056AReduced transport kinetic energy requirementsSmall scaleChemical/physical/physico-chemical processesEngineeringRapid response
The invention discloses an impinging stream micro-channel reactor. At least two micro-channels which are coaxial or impinge oppositely with a certain angle and have the equivalent hydraulic diameter of 0.1 to 2 millimeters are engraved on a flat material, and an impinging area with the width (or the opposite impinging distance) of 0.5 to 10 millimeters is formed between the opposite impinging channels. The micro-channels can be distributed in a parallel array and communicated to two inlets with step branch configurations. A plurality of chips can be assembled separately or stacked in order and pressed to form the impinging stream micro-channel reactor with four feeding holes at most. The impinging stream micro-channel reactor of the invention is applicable to an instantaneously finished reaction process or a reactive precipitation process such as gas-liquid and liquid-liquid quick reaction for generating liquid or solid (superfine powder or nano material and the like). The micro-channel form realizes high reaction evenness in the impinging area, and solves the problem that the impinging stream is difficultly provided with a multi-level system (mutual interference among a plurality of pairs of impinging streams) in the past.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Energy conversion systems utilizing parallel array of automatic switches and generators

Nanoelectromechanical systems utilizing nanometer-scale assemblies are provided that convert thermal energy into another form of energy that can be used to perform useful work at a macroscopic level. These systems may be used to, for example, produce useful quantities of electric or mechanical energy, heat or cool an external substance or propel an object in a controllable direction. In particular, the present invention includes nanometer-scale beams that reduce the velocity of working substance molecules that collide with this nanometer-scale beam by converting some of the kinetic energy of a colliding molecule into kinetic energy of the nanometer-scale beam. In embodiments that operate without a working substance, the thermal vibrations of the beam itself create the necessary beam motion. In some embodiments, an automatic switch is added to realize a regulator such that the nanometer-scale beams only deliver voltages that exceed a particular amount. Various devices including, piezoelectric, electromagnetic and electromotive force generators, are used to convert the kinetic energy of the nanometer-scale beam into electromagnetic, electric or thermal energy. Systems in which the output energy of millions of these devices is efficiently summed together are also disclosed as well as systems that include nanometer-scale transistors.
Owner:CJP IP HLDG

Energy conversion systems utilizing parallel array of automatic switches and generators

Nanoelectromechanical systems utilizing nanometer-scale assemblies are provided that convert thermal energy into another form of energy that can be used to perform useful work at a macroscopic level. These systems may be used to, for example, produce useful quantities of electric or mechanical energy, heat or cool an external substance or propel an object in a controllable direction. In particular, the present invention includes nanometer-scale beams that reduce the velocity of working substance molecules that collide with this nanometer-scale beam by converting some of the kinetic energy of a colliding molecule into kinetic energy of the nanometer-scale beam. In embodiments that operate without a working substance, the thermal vibrations of the beam itself create the necessary beam motion. In some embodiments, an automatic switch is added to realize a regulator such that the nanometer-scale beams only deliver voltages that exceed a particular amount. Various devices including, piezoelectric, electromagnetic and electromotive force generators, are used to convert the kinetic energy of the nanometer-scale beam into electromagnetic, electric or thermal energy. Systems in which the output energy of millions of these devices is efficiently summed together are also disclosed as well as systems that include nanometer-scale transistors.
Owner:CJP IP HLDG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products