Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1237 results about "Radiotherapy treatment" patented technology

Radiotherapy treatment. Radiotherapy, also called radiation therapy, kills cancer cells. It’s used in the early stages of cancer treatment or after it has started to spread. It can also be used to relieve pain and discomfort from cancer that has spread.

Methods and apparatus for renal neuromodulation via stereotactic radiotherapy

The present disclosure describes methods and apparatus for renal neuromodulation via stereotactic radiotherapy for the treatment of hypertension, heart failure, chronic kidney disease, diabetes, insulin resistance, metabolic disorder or other ailments. Renal neuromodulation may be achieved by locating renal nerves and then utilizing stereotactic radiotherapy to expose the renal nerves to a radiation dose sufficient to reduce neural activity. A neural location element may be provided for locating target renal nerves, and a stereotactic radiotherapy system may be provided for exposing the located renal nerves to a radiation dose sufficient to reduce the neural activity, with reduced or minimized radiation exposure in adjacent tissue. Renal nerves may be located and targeted at the level of the ganglion and / or at postganglionic positions, as well as at pre-ganglionic positions.
Owner:MEDTRONIC ARDIAN LUXEMBOURG SARL

Combined radiation therapy and imaging system and method

A method of and system for locating a targeted region in a patient uses a CT imaging subsystem and a radiotherapy subsystem arranged so the targeted region can be imaged with the imaging system and treated with a beam of therapeutic X-ray radiation using a radiotherapy subsystem. The beam of therapeutic X-rays is in a plane that is substantially fixed relative to, and preferably coplanar with, a slice plane of the CT imaging subsystem so that the targeted region can be imaged during a planning phase, and imaged and exposed to the therapeutic X-rays during the treatment phase without the necessity of moving the patient.
Owner:ANLOGIC CORP (US)

Brachytherapy apparatus and methods of using same

Apparatus, systems and methods for delivering brachytherapy to a target tissue region of a human or other mammalian body. In some embodiments, a flexible brachytherapy device is implanted that includes a therapy delivery portion having one or more radioactive sources securely retained thereto, and a tail portion extending from the therapy delivery portion. Once implanted, the tail portion may extend outside the body, where it may be folded and secured flat against the skin. The device may be removed at therapy completion. Other embodiments of the invention are directed to systems and methods for delivering brachytherapy devices to the body.
Owner:CIANNA MEDICAL INC

Image-guided medical intervention apparatus and method

In some embodiments, an image-guided radiotherapy apparatus and method is provided in which a radiotherapy radiation source and a gamma ray photon imaging device are positioned with respect to a patient area so that a patient can be treated by a beam emitted from the radiotherapy apparatus and can have images taken by the gamma ray photon imaging device. Radiotherapy treatment and imaging can be performed substantially simultaneously and / or can be performed without moving the patient in some embodiments. The gamma ray photon imaging device can be coupled and movable with respect to any part of a building structure, can be located on a portable frame movable to and from the radiotherapy radiation source and patient, or can take other forms. In some embodiments, the gamma ray photon imaging device can be used for imaging in connection with other types of medical interventions.
Owner:UNIVERSITY OF CHICAGO

Image-guided medical intervention apparatus and method

In some embodiments, an image-guided radiotherapy apparatus and method is provided in which a radiotherapy radiation source and a gamma ray photon imaging device are positioned with respect to a patient area so that a patient can be treated by a beam emitted from the radiotherapy apparatus and can have images taken by the gamma ray photon imaging device. Radiotherapy treatment and imaging can be performed substantially simultaneously and / or can be performed without moving the patient in some embodiments. The gamma ray photon imaging device can be coupled and movable with respect to any part of a building structure, can be located on a portable frame movable to and from the radiotherapy radiation source and patient, or can take other forms. In some embodiments, the gamma ray photon imaging device can be used for imaging in connection with other types of medical interventions.
Owner:UNIVERSITY OF CHICAGO

Radiolabeled irreversible inhibitors of epidermal growth factor receptor tyrosine kinase and their use in radioimaging and radiotherapy

Radiolabeled epidermal growth factor receptor tyrosine kinase (EGFR-TK) irreversible inhibitors and their use as biomarkers for medicinal radioimaging such as Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) and as radiopharmaceuticals for radiotherapy are disclosed.
Owner:YISSUM RES DEV CO OF THE HEBREWUNIVERSITY OF JERUSALEM LTD +1

Computer assisted radiotherapy dosimeter system and a method therefor

In order to facilitate the display and evaluation of data acquired while irradiating a body, e.g. a patient undergoing radiation therapy, a dosimetry system has a plurality of sensors for disposition on, in or near the body to be irradiated and connected to a sensor reading instrument which is interfaced with a display system, for example a personal computer, which is arranged to display, in use, one or more representations, for example drawings or photographs, of the body to be irradiated, along with the positions and the dose data for those specific locations where the dosimeter sensors were placed.
Owner:BEST THERATRONICS +1

Multi-Objective Radiation Therapy Optimization Method

A novel and powerful fluence and beam orientation optimization package for radiotherapy optimization, called PARETO (Pareto-Aware Radiotherapy Evolutionary Treatment Optimization), makes use of a multi-objective genetic algorithm capable of optimizing several objective functions simultaneously and mapping the structure of their trade-off surface efficiently and in detail. PARETO generates a database of Pareto non-dominated solutions and allows the graphical exploration of trade-offs between multiple planning objectives during IMRT treatment planning PARETO offers automated and truly multi-objective treatment plan optimization, which does not require any objective weights to be chosen, and therefore finds a large sample of optimized solutions defining a trade-off surface, which represents the range of compromises that are possible.
Owner:FIEGE JASON +5

Deterministic computation of radiation doses delivered to tissues and organs of a living organism

Various embodiments of the present invention provide methods and systems for deterministic calculation of radiation doses, delivered to specified volumes within human tissues and organs, and specified areas within other organisms, by external and internal radiation sources. Embodiments of the present invention provide for creating and optimizing computational mesh structures for deterministic radiation transport methods. In general these approaches seek to both improve solution accuracy and computational efficiency. Embodiments of the present invention provide methods for planning radiation treatments using deterministic methods. The methods of the present invention may also be applied for dose calculations, dose verification, and dose reconstruction for many different forms of radiotherapy treatments, including: conventional beam therapies, intensity modulated radiation therapy (“IMRT”), proton, electron and other charged particle beam therapies, targeted radionuclide therapies, brachytherapy, stereotactic radiosurgery (“SRS”), Tomotherapy®; and other radiotherapy delivery modes. The methods may also be applied to radiation-dose calculations based on radiation sources that include linear accelerators, various delivery devices, field shaping components, such as jaws, blocks, flattening filters, and multi-leaf collimators, and to many other radiation-related problems, including radiation shielding, detector design and characterization; thermal or infrared radiation, optical tomography, photon migration, and other problems.
Owner:TRANSPIRE

Real-Time Ultrasound Monitoring of Heat-Induced Tissue Interactions

The present invention includes an apparatus, method and system for monitoring and controlling radiation therapy, the system including a radiative source that emits energy that enters a tissue and is absorbed at or a near a target site in the tissue to heat the tissue; an ultrasound transmitter directed at the target site, wherein the ultrasound transmitter emits ultrasound signals to the tissue that has been heated by the radiative source; an ultrasound receiver directed at the target site, wherein the ultrasound receiver receives ultrasound signals emitted from the ultrasound transmitter and reflected from the tissue that has been heated by the radiative source; and a signal processor that processes the received ultrasound signal to calculate a tissue composition scan or tissue temperature scan.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

X-ray pixel beam array systems and methods for electronically shaping radiation fields and modulation radiation field intensity patterns for radiotherapy

X-ray pixel beam array systems and methods for electronically shaping radiation fields and modulating radiation field intensity patterns for radiotherapy are disclosed. One exemplary pre-clinical system may include addressable electron field emitters (102, 104) that are operable to emit a plurality of electron pixel beams (106, 108, 110). Each electron pixel beam may correspond to an x-ray target (124) and x-ray pixel beam collimation aperture (136, 138) to convert a portion of energy associated with the electron pixel beam to a corresponding x-ray pixel beam (140, 142). Further, the x-ray pixel beam array collimator (130) forms a one-to-one correspondence between individual electron pixel beam and its corresponding x-ray pixel beam. One exemplary clinical system may include a high-energy electron source (1203), an n-stage scanning system (1210), x-ray pixel beam targets (1212), and an x-ray pixel beam array collimator (1214). A controller (1206) may sequentially direct electron beam pulses to predetermined x-ray pixel targets and produce an electronically controlled radiation field direction, pattern; and intensity pattern.
Owner:DUKE UNIV +1

Radiotherapy support apparatus

ActiveUS20090175418A1Performed accurately and safelyExcessive irradiationX-ray apparatusX-ray/gamma-ray/particle-irradiation therapyVolumetric dataComputer science
A radiotherapy treatment support apparatus includes a storage unit which stores absorption dose volume data expressing a spatial distribution of absorption dose in a subject, a generation unit which generates fusion data associated with morphology volume data of the subject and the absorption dose volume data so as to be associated with a plurality of segments, and a display unit which displays an image which has the distribution of absorption dose superimposed on the two-dimensional morphology image of the subject using the fusion data.
Owner:TOSHIBA MEDICAL SYST CORP

Radioactive ion

The present invention relates to a method for implantation of Xe isotopes in a matrix for production of 125I sources that do not shed radioactive atoms. 125Xe implanted at 12 kV in steel, titanium and gold does not evolve after more than 10 half-lives (380 h) and 125I from the decay of implanted 125Xe is equally stable for 2 half-lives (120 d). The matrix having radioxenon implanted is useful as a medical device, for instance as a “seed” for radiotherapeutic uses or in production of stents. Methods of treatment utilizing such devices are also encompassed by the present invention.
Owner:THE UNIV OF ALBERTA +1

On-demand cleavable linkers for radioconjugates for cancer imaging and therapy

The present invention provides compositions comprising a biological agent, a targeting moiety, and a peptide linker attaching the biological agent to the targeting moiety, wherein the peptide linker is selectively cleaved by a protease. Efficient methods are provided for administering the compositions of the present invention for treating cancer or imaging a tumor, organ, or tissue in a subject. Kits are also provided for administering the compositions of the present invention for radiotherapy or radioimaging.
Owner:RGT UNIV OF CALIFORNIA

Bioabsorbable brachytherapy device

A bioabsorbable brachytherapy device includes a tubular housing with sealed ends and an enclosed radioactive material. The radioactive material includes a radioisotope, such as palladium-103 or iodine-125. The tubular housing is made from a biocompatible and bioabsorbable polymeric material, and is sealed by means such as heat welding or solvent fixing. The device may further include a radiopaque medium and one or more therapeutic drugs.
Owner:FERRING BV

Method for calculation radiation doses from acquired image data

Various embodiments of the present invention provide processes for applying deterministic radiation transport solution methods for calculating doses and predicting scatter in radiotherapy and imaging applications. One method embodiment of the present invention is a process for using deterministic methods to calculate dose distributions resulting from radiotherapy treatments, diagnostic imaging, or industrial sterilization, and for calculating image scatter for the purposes of image reconstruction. In one embodiment of the present invention, a method provides a means for transport of external radiation sources through field-shaping devices. In another embodiment of the present invention, a method includes a process for calculating the dose response at selected points and volumes prior to radiotherapy treatment planning.
Owner:FAILLA GREGORY A +3

Method of image guided intraoperative simultaneous several ports microbeam radiation therapy with microfocus X-ray tubes

This invention pertains to a method of low-cost intraoperative all field simultaneous parallel microbeam single fraction few seconds duration 100 to 1,000 Gy and higher dose radiosurgery with micro-electro-mechanical systems (MEMS)-carbon nanotube based microaccelerators. It ablates cancer cells including the mesenchymal epithelial transformation associated cancer stem cells. Microbeam brachy-therapeutic radiosurgery is performed. Microaccelerators are configured for simultaneous parallel microbeam emission from varying angels to an isocentric tumor. Their additive dose rate at the isocentric tumor is in the range of 10,000 to 20,000 Gy / s. It eliminates most tumor recurrence and metastasis which enhances cancer cure rates. It also exposes cancer antigens which induces cancer immunity. Stereotactic breast core biopsy is combined with, positron emission tomography and computerized tomography and phase-contrast imaging. Parallel microbeam brachytherapy preserves normal breast appearance. Migration of normal stem cells from unirradiated valley regions heals the radiation damage to the normal tissue.
Owner:SAHADEVAN VELAYUDHAN

Radioactive member and method of making

A radioactive member for use in brachytherapy comprising a molded elongate, bioabsorbable carrier material with spaced radioactive sources disposed therein, and methods for the manufacture thereof. The radioactive members may be used in treatment of, for example, prostate cancer.
Owner:MEDI PHYSICS IN

Real time brachytherapy spatial registration and visualization system

A method and system for monitoring loading of radiation into an insertion device for use in a radiation therapy treatment to determine whether the treatment will be in agreement with a radiation therapy plan. In a preferred embodiment, optical sensors and radiation sensors are used to monitor loading of radioactive seeds and spacers into a needle as part of a prostate brachytherapy treatment.
Owner:IMPAC MEDICAL SYST

Adaptive intracavitary brachytherapy applicator

ActiveUS20060235260A1Improve on current brachytherapy clinical outcomeReduce complication rateRadiation therapyBrachytherapy deviceNormal tissue
The invention is a novel adaptive CT-compatible brachytherapy applicator with remotely-controlled radial and longitudinal motion radioactive source lumen shields that can be manipulated by the radiation oncologist to optimize the dose distribution to the target and normal tissue structures for brachytherapy procedures.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products