Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

267 results about "Temperature independent" patented technology

Temperature is definitely an independent variable there, because we expect that the higher the temperature, the more people will consume ice-creams to cool off. Whether a variable is independent or dependent is based on what you are trying to measure in the first place.

Disposable test strips with integrated reagent/blood separation layer

An improved disposable glucose test strip for use in a test meter of the type which receives a disposable test strip and a sample of blood from a patient and performs an electrochemical analysis using a non-conductive integrated reagent / blood separation layer (17) containing a filler, an enzyme effective to oxidize glucose, e.g., glucose oxidase, and a mediator effective to transfer electrons from the enzyme. The integrated layer formulation is printed over a conductive carbon element (16) to form a working electrode. The filler, for example a silica filler, is selected to have a balance of hydrophobicity such that on drying it forms a two-dimensional network on the surface of the conductive element. The response of this test strip is essentially temperature independent over relevant temperature ranges and is substantially insensitive to the hematocrit of the patient.
Owner:SELFCARE +1

Process, voltage, temperature independent switched delay compensation scheme

A delay compensation circuit for a delay locked loop which includes a main delay line having a fine delay line comprising fine delay elements and a coarse delay line comprising coarse delay elements, the main delay line being controlled by a controller, the delay compensation circuit comprising: an adjustable fine delay for modeling a coarse delay element, a counter for controlling the adjustable fine delay to a value which is substantially the same as that of a coarse delay element, a circuit for applying a representation of the system clock to the delay compensation circuit, and a circuit for applying the fine delay count from the counter to the controller for adjusting the fine delay line of the main delay line to a value which is substantially the same as that of a coarse delay element of the main delay line.
Owner:CONVERSANT INTPROP MANAGEMENT INC

Power supply independent temperature sensor

A temperature sensor is fabricated in an integrated circuit in combination with another device such as a microprocessor using a fabrication technology that is suitable for fabricating the device. Operation of the temperature sensor is based on the bandgap physics of semiconductors using a bandgap reference circuit and an amplifier that generate two measurement voltages, a voltage that is temperature-dependent and a voltage that is temperature-independent. The temperature sensor includes a bandgap power supply circuit that supplies a power supply voltage that is very stable to drive the temperature sensor so that the temperature sensor generates an output signal that is essentially independent of the power supply voltage.
Owner:GLOBALFOUNDRIES INC

Spectral instrument using multiple non-interfering optical beam paths and elements for use therewith

A spectrometer, or a spectral instrument using multiple non-interfering optical beam paths and special optical elements. The special optical elements for use with the instrument are used for directing the optical beam and / or altering the form of the beam. The instrument has the potential, depending upon the totality of the optical components incorporated into the instrument, to be a monochromator, a spectroradiometer, a spectrophotometer and a spectral source. The spectral instrument may further be a part of the spectral system. The system may include the spectral instrument, a power module and means for remote control of the instrument. Such remote control may be by use of a personal computer or a control system dedicated to the control, measurement and analysis of the collected information. The multiple non-interfering beam paths are created using specially designed optical elements such as a diffraction grating, a splitter box, a zero back-lash drive system for movement of the grating element. The orientation of and a physical / spatial relationship between the field lenses, slits, return mirror, reflecting prism, turning lenses all define the multiple, preferably two paths. Particularly, there is a double pass through the grating to increase dispersion, reduce scatter while maintaining a perfect temperature independent spectral match for the second pass. Using the same grating twice reduces scatter by about a factor of 1000, increases the dispersion by a factor of two, and eliminates any temperature-related mechanical spectral drift which often is present with two separate monochromators. Because of the specially designed grating structure, the grating can cause the concurrent diffraction of a plurality of incident optical beams, each of which beams have different angles of incidence and different angles of reflection. The path of the incident and the reflected beam to and from the grating is "off-axis". That is, the beams going to and from the grating do not use the optical axis of the grating structure.
Owner:RYER DAMOND V

Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors

A non-contact infrared thermometer measures target temperatures remotely without requiring the ratio of the target size to the target distance to the thermometer. A collection means collects and focusses target IR radiation on an IR detector. The detector measures thermal energy of the target over a spectrum using micromechanical sensors. A processor means calculates the collected thermal energy in at least two different spectral regions using a first algorithm in program form and further calculates the ratio of the thermal energy in the at least two different spectral regions to obtain the target temperature independent of the target size, distance to the target and emissivity using a second algorithm in program form.
Owner:LOCKHEED MARTIN ENERGY SYST INC

Temperature stable voltage reference circuit using a metal-silicon Schottky diode for low voltage circuit applications

Silicon-based voltage reference circuits that generate a temperature independent voltage reference that is less than even the silicon bandgap potential. The voltage reference circuit includes a diode-connected metal-silicon Schottky diode that is biased with a current. In this configuration, the anode terminal of the Schottky diode is a CTAT voltage source in this configuration. The anode terminal has a voltage at zero degrees Kelvin at the barrier height of the Schottky diode, which may differ depending on the metal chosen, but in most cases is less than the bandgap potential of silicon. The voltage reference circuit also includes a PTAT voltage source. The PTAT voltage may be generated in a variety of ways. An amplifier amplifies the PTAT voltage, and a summer adds the CTAT voltage to the amplified PTAT voltage to generate the temperature stable voltage reference.
Owner:SEMICON COMPONENTS IND LLC

Temperature-independent external cavity laser

Hybrid-type external cavity lasers designed to have a semiconductor laser diode mounted on a planar waveguide platform by a flip-chip bonding method. The temperature independent external cavity laser comprises a semiconductor laser diode, a planar waveguide platform, and a thin film multi-layered reflection filter. The semiconductor laser diode includes an active region to generate light, and at least one light-emitting surface. The planar waveguide platform includes a substrate, a metallic pattern formed on a predetermined region of the substrate, a waveguide structure, and a trench portion. The waveguide structure comprises a lower clad layer, a core, and an upper clad layer sequentially stacked in this order on a region of the substrate excluding the predetermined region formed of the metallic pattern. The trench portion has opposite side surfaces on which the core is exposed.
Owner:ELECTRONICS & TELECOMM RES INST

Temperature independent pressure sensor and associated methods thereof

A temperature independent pressure sensor for selectively determining pressure is provided. The sensor comprises a resonance sensor circuit, a pressure sensitive component disposed on the sensor circuit, and an electromagnetic field modulator. A temperature independent pressure sensor system comprises a resonance sensor circuit, a pressure sensitive component disposed on the sensor circuit, an electromagnetic field modulator, and a processor that generates a multivariate analysis of sensor response pattern that is based on a change in an environmental pressure of the sensor system. A method of detecting a pressure response pattern in a temperature independent manner is also provided.
Owner:GENERAL ELECTRIC CO

Voltage source circuit with selectable temperature independent and temperature dependent voltage outputs

A voltage source includes first and second pn junctions which conduct the outputs of respective current sources to establish respective base-emitter voltages Vbe1 and Vbe2 at respective nodes; Vbe1 and Vbe2 can each be generated with a current I or a current N*I. An amplifier A1 has its non-inverting input connected to the second node and its inverting input connected to the first node through an input capacitor; a feedback capacitor is connected between the inverting input and a third node. Switches are connected between A1's inverting input and A1's output, between the third node and A1's output, and between the third node and a circuit common point. A control circuit operates the switches and current sources during first and second operating phases to selectively produce a temperature independent output voltage or a temperature dependent output voltage.
Owner:ANALOG DEVICES INC

Temperature-independent optical multiplexer and/or demultiplexer

The present invention concerns a device forming an optical multiplexer and / or demultiplexer of the type including two plane optical surfaces separated by an array of waveguides having controlled differences in length, wherein each waveguide comprises at least two spans placed in series and having respective lengths and refractive indices that are suitable for controlling the influence of temperature variations on the device.
Owner:OCLARO NORTH AMERICA

Analyte Sensors Having Temperature Independent Membranes

Embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have a membrane structure with an analyte permeability that is substantially temperature independent. The devices also include a sensing layer disposed on a working electrode of in vivo analyte sensors, e.g., continuous and / or automatic in vivo monitoring using analyte sensors and / or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
Owner:ABBOTT DIABETES CARE INC

Temperature-independent chemical and biological sensors

Methods and sensors for selective fluid sensing are provided. A sensor includes a resonant inductor-capacitor-resistor (LCR) circuit and a sensing material disposed over a sensing region. The sensing region comprises at least a portion of the LCR circuit. Temperature-dependent response coefficients of inductance L, capacitance C, and resistance R properties of the LCR circuit and the sensing material are at least approximately 5 percent different from one another. The difference in the temperature-dependent response coefficients of the properties of the LCR circuit and the sensing material enables the sensor to selectively detect analyte fluids from an analyzed fluid mixture substantially independent of temperature.
Owner:GENERAL ELECTRIC CO

Low-voltage low-power consumption CMOS voltage reference circuit

The invention discloses a low-voltage low-power-consumption CMOS voltage reference circuit, which is used for generating a voltage reference. The CMOS voltage reference circuit comprises a starting circuit 11, a self-bias current source 12, a voltage generator 13 with negative temperature coefficient, a voltage reference regulator 14 and a single-tube current mirror MOS transistor M0. The CMOS voltage reference circuit adopts an MOS transistor operating at a sub-threshold area to generate a voltage with negative temperature coefficient, utilizes a sleeve and a folded structure of the MOS transistor operating at the sub-threshold area to substitute a resistance for amplifying a voltage with positive temperature coefficient, thereby offsetting the voltage with positive temperature coefficient by the voltage with negative temperature coefficient, and generating a temperature-independent voltage reference. The CMOS voltage reference circuit eliminates the use of passive devices and an operation amplifier, wherein the passive devices relate to a resistance, a capacitor and the like, thereby greatly reducing the component number of the circuit and the static operating current, and reducing the power consumption and the area of the circuit.
Owner:SOI MICRO CO LTD

Integrated semiconductor memory with temperature-dependent voltage generation

An integrated semiconductor memory device includes a temperature sensor circuit to generate a temperature-dependent control signal, a reference circuit to generate a temperature-independent reference signal, a comparator circuit and a voltage generator circuit. The comparator circuit generates a first level or second level of an activation signal in a manner dependent on the comparison of the control signal and the reference signal which are both fed to it on an input side. The voltage generator circuit generates a first control signal or a second control signal in a manner dependent on the level of the activation signal. The integrated semiconductor memory enables the generation of two control signals for a selection transistor of a memory cell in a manner dependent on whether the temperature sensor circuit detects a temperature in a first temperature range or in a second temperature range.
Owner:POLARIS INNOVATIONS LTD

On-chip temperature measurement technique

A temperature monitoring technique that eliminates the need for bipolar devices. In one embodiment of the present invention, a long-channel MOS transistor is configured in a diode connection to sense change in temperature. The diode drives a linear regulator and an oscillator. The oscillator in turn drives a counter, which counts pulses for a fixed period of time. The system clock on the chip is used as a temperature-independent frequency to generate a count. The temperature-dependent frequency is counted for a fixed number of system clock cycles. The present invention eliminates band gap circuitry currently used in most thermal sensing devices to provide a temperature-independent reference.
Owner:ORACLE INT CORP

Method and system for independent control of voltage and its temperature co-efficient in non-volatile memory devices

Method and system for controlling voltage and its temperature co-efficient in a non-volatile memory device having a plurality of programmable memory cells is provided. The system includes a temperature-dependent voltage generator for generating an output that is controlled independently by a first multiplier; a temperature-independent voltage generator having a constant output, wherein the constant output is controlled by a second multiplier; and an amplifier that receives the constant output of the temperature-independent voltage generator and the output of temperature-dependent voltage generator to generate a voltage that is applied to a memory cell for a read, and program-verify operation; wherein the temperature co-efficient and voltage applied to memory cells is controlled independently so that intrinsic temperature coefficient of the memory cell is substantially similar to temperature coefficient of the applied voltage.
Owner:SANDISK TECH LLC

Process, voltage, temperature independent switched delay compensation scheme

A delay compensation circuit for a delay locked loop which includes a main delay line having a fine delay line comprising fine delay elements and a coarse delay line comprising coarse delay elements, the main delay line being controlled by a controller, the delay compensation circuit comprising: an adjustable fine delay for modeling a coarse delay element, a counter for controlling the adjustable fine delay to a value which is substantially the same as that of a coarse delay element, a circuit for applying a representation of the system clock to the delay compensation circuit, and a circuit for applying the fine delay count from the counter to the controller for adjusting the fine delay line of the main delay line to a value which is substantially the same as that of a coarse delay element of the main delay line.
Owner:CONVERSANT INTPROP MANAGEMENT INC

Management of thermal fluctuations in lean NOx adsorber aftertreatment systems

A method and apparatus manage heat in exhaust gas in an aftertreatment system that employs a lean NOx adsorber. A de-sulfation hot line and cooling line are employed to control exhaust gas temperatures for adsorption, regeneration and de-sulfation cycles of the aftertreatment system where each cycle can require different chemical and exhaust gas temperatures independent of the engine operation. The method and apparatus include a SOx adsorber to provide greater system durability.
Owner:WESTPORT POWER

Low voltage bandgap reference (BGR) circuit

A low voltage bandgap reference circuit based on a current summation technique where reference voltages with positive and negative temperature coefficients are generated by a first circuit. These reference voltages are coupled to amplifying circuits which generate reference voltages with equal and opposite temperature coefficients based on the ratio of resistors in these amplifying circuits, thereby producing a temperature independent reference voltage. The current from each of these amplifying circuits is then summed in a summing resistor, where the size of the resistor determines the magnitude of the temperature independent reference voltage.
Owner:ETRON TECH INC

Non-volatile storage with bias for temperature compensation

A non-volatile storage system in which a body bias is applied to a non-volatile storage system to compensate for temperature-dependent variations in threshold voltage, sub-threshold slope, depletion layer width and / or 1 / f noise. A desired bias level is set based on a temperature-dependent reference signal. In one approach, a level of the biasing can decrease as temperature increases. The body bias can be applied by applying a voltage to a p-well and n-well of a substrate, applying a voltage to the p-well while grounding the n-well, or grounding the body and applying a voltage to the source and / or drain of a set of non-volatile storage elements. Further, temperature-independent and / or temperature-dependent voltages can be applied to selected and unselected word lines in the non-volatile storage system during program, read or verify operations. The temperature-dependent voltages can vary based on different temperature coefficients.
Owner:SANDISK TECH LLC

Fast start-up low-voltage bandgap reference voltage generator

A fast start-up low-voltage bandgap reference voltage generator uses two current generators to provide a first current having a positive temperature coefficient and a second current having a negative temperature coefficient, respectively, and a resistor to generate a temperature independent output voltage according to the sum of the first and second currents. The current generator for providing the first current has a self-bias circuit which uses a single MOSFET to establish the first current, and thereby avoids error caused by mismatched MOSFETs.
Owner:RICHTEK TECH

Compression/expansion process that allows temperature to vary independent of pressure

Systems and methods are described herein to operate an air compression and / or expansion system in its most efficient regime, at a desired efficiency, and / or achieve a desired pressure ratio independent of discharge temperature, with little to no impact on thermal efficiency. For example, systems and methods are provided for controlling and operating hydraulic pumps / motors used within a hydraulically actuated device / system, such as, for example, a gas compression and / or expansion energy system, in its most efficient regime, continuously, substantially continuously, intermittently, or varied throughout an operating cycle or stroke of the system to achieve any desired pressure and temperature profile. Such systems and methods can achieve any desired pressure ratio independent of input or discharge temperature, and can also achieve any desired discharge temperature independent of pressure ratio, without altering any of the structural components of the device or system.
Owner:GENERAL COMPRESSION

Controller with constant current limit

Methods and apparatuses are disclosed for generating a temperature independent current limit. The value of the temperature independent current limit may be determined based in part on an error signal representative of a difference between an actual output value and a desired output value of a power converter. When the error signal is below a lower threshold voltage, the temperature independent current limit may be set to a first value. When the error signal is above an upper threshold voltage, the temperature independent current limit may be set to a second, higher value. When the error signal is between the lower threshold voltage and the upper threshold voltage, the temperature independent current limit may change linearly with the error signal. The error signal may be adjusted to compensate for changes in the system caused by a change in temperature.
Owner:POWER INTEGRATIONS INC

Temperature-Independent Capacitor and Capacitor Module

A capacitor includes a first heating element and a first capacitor region. The first capacitor region includes dielectric layers and internal electrodes. The internal electrodes are arranged between the dielectric layers. The first heating element and the first capacitor region are connected to each other in a thermally conductive manner.
Owner:EPCOS AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products