Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1893results about "Optical sensors" patented technology

Method and apparatus for demodulating signals in a pulse oximetry system

A method and an apparatus measure blood oxygenation in a subject. A first signal source applies a first input signal during a first time interval. A second signal source applies a second input signal during a second time interval. A detector detects a first parametric signal responsive to the first input signal passing through a portion of the subject having blood therein. The detector also detects a second parametric signal responsive to the second input signal passing through the portion of the subject. The detector generates a detector output signal responsive to the first and second parametric signals. A signal processor receives the detector output signal and demodulates the detector output signal by applying a first demodulation signal to a signal responsive to the detector output signal to generate a first output signal responsive to the first parametric signal. The signal processor applies a second demodulation signal to the signal responsive to the detector output signal to generate a second output signal responsive to the second parametric signal. The first demodulation signal and the second demodulation signal both include at least a first component having a first frequency and a first amplitude and a second component having a second frequency and a second amplitude. The second frequency is a harmonic of the first frequency. The second amplitude is related to the first amplitude to minimize crosstalk from the first parametric signal to the second output signal and to minimize crosstalk from the second parametric signal to the first output signal.
Owner:JPMORGAN CHASE BANK NA

System and method for a tissue resection margin measurement device

Embodiments of the invention provide a system and method for resecting a tissue mass. The system for resecting a tissue mass includes a surgical instrument and a first sensor for measuring a signal corresponding to the position and orientation of the tissue mass. The first sensor is dimensioned to fit insider or next to the tissue mass. The system also includes a second sensor attached to the surgical instrument configured to measure the position and orientation of the surgical instrument. The second sensor is configured to receive the signal from the first sensor. A controller is in communication with the first sensor and / or the second sensor, and the controller executes a stored program to calculate a distance between the first sensor and the second sensor. Accordingly, visual, auditory, haptic or other feedback is provided to the clinician to guide the surgical instrument to the surgical margin.
Owner:THE BRIGHAM & WOMEN S HOSPITAL INC

Robust alarm system

A robust alarm system has an alarm controller adapted to input an alarm trigger and to generate at least one alarm drive signal in response. Alarm subsystems input the alarm drive signal and activate one or more of multiple alarms accordingly. A subsystem function signal provides feedback to the alarm controller as to alarm subsystem integrity. A malfunction indicator is output from the alarm controller in response to a failure within the alarm subsystems.
Owner:JPMORGAN CHASE BANK NA

Method for modulating light penetration depth in tissue and diagnostic applications using same

Devices and methods for non-invasively measuring at least one parameter of a sample, such as the presence of a disease condition, progression of a disease state, presence of an analyte, or concentration of an analyte, in a biological sample, such as, for example, a body part. In these devices and methods, temperature is controlled and is varied between preset boundaries. The methods and devices measure light that is reflected, scattered, absorbed, or emitted by the sample from an average sampling depth, dav, that is confined within a region in the sample wherein temperature is controlled. According to the method of this invention, the sampling depth dav, in human tissue is modified by changing the temperature of the tissue. The sampling depth increases as the temperature is lowered below the body core temperature and decreases when the temperature is raised within or above the body core temperature. Changing the temperature at the measurement site changes the light penetration depth in tissue and hence dav. Change in light penetration in tissue as a function of temperature can be used to estimate the presence of a disease condition, progression of a disease state, presence of an analyte, or concentration of an analyte in a biological sample. According to the method of this invention, an optical measurement is performed on a biological sample at a first temperature. Then, when the optical measurement is repeated at a second temperature, light will penetrate into the biological sample to a depth that is different from the depth to which light penetrates at the first temperature by from about 5% to about 20%.
Owner:ABBOTT DIABETES CARE INC

Magnetic-flap optical sensor

A magnetic-flap optical sensor has an emitter activated so as to transmit light into a fingertip inserted between an emitter pad and a detector pad. The sensor has a detector responsive to the transmitted light after attenuation by pulsatile blood flow within fingertip so as to generate a detector signal. Flaps extend from the emitter pad and along the sides of a detector shell housing the detector pad. Flap magnets are disposed on the flap ends and shell magnets are disposed on the detector shell sides. A spring urges the emitter shell and detector shell together, so as to squeeze the fingertip between its fingernail and its finger pad. The flap magnets have opposite north and south orientations from the shell magnets, urging the flaps to the detector shell sides and squeezing the fingertip sides. These spring and magnet squeezing forces occlude the fingertip blood flow and accentuate a detector signal responsive to an active pulsing of the fingertip.
Owner:MASIMO CORP

Surgical instrument with detection sensors

Aspects of the present disclosure are presented for a surgical instrument having one or more sensors at or a near an end effector and configured to aide in the detection of tissues and other materials and structures at a surgical site. The detections may then be used to aide in the placement of the end effector and to confirm which objects to operate on, or alternatively, to avoid. Examples of sensors include laser sensors used to employ Doppler shift principles to detect movement of objects at the surgical site, such as blood cells; resistance sensors to detect the presence of metal; monochromatic light sources that allow for different levels of absorption from different types of substances present at the surgical site, and near infrared spectrometers with small form factors.
Owner:CILAG GMBH INT

Method and apparatus for calibration to reduce coupling between signals in a measurement system

A method and an apparatus for separating a composite signal into a plurality of signals is described. A signal processor receives a composite signal and separates a composite signal into separate output signals. Feedback from one or more of the output signals is provided to a configuration module that configures the signal processor to improve a quality of the output signals. In one embodiment, calibration data from multiple calibration data sets is used to configure the demodulation of the composite signal into separate output signals.
Owner:MASIMO CORP

Noninvasive analyzer sample probe interface method and apparatus

A method and apparatus are provided for noninvasive sampling. More particularly, the method and apparatus relate to control of motion of an optical sample probe interface relative to a tissue sample site. A dynamic probe interface, is used to collect spectra of a targeted sample, control positioning of the sample probe relative to the tissue sample in terms of at least one of x-, y-, and z-axes, and / or control of sample tissue displacement to minimize spectral variations resulting from the sampling process and increase analyte property estimation precision and accuracy.
Owner:GLT ACQUISITION

Low coherence interferometry for detecting and characterizing plaques

A method and system for determining a characteristic of a biological sample including directing light at the biological sample and receiving that light; directing the light at a reference reflecting device and receiving that light; adjusting an effective light path length to facilitate an interference of the light reflected from the biological sample corresponding to a first depth and the light reflected from the reference reflecting device; and detecting the broadband light resulting from the interference, to provide an interference signal. The method also includes: determining a first phase associated with the interference signal corresponding to the first depth; varying the effective light path length to define a second depth; determining a second phase associated with the interference signal corresponding to the second depth; and determining the characteristic of the biological sample from the phases.
Owner:VZN CAPITAL

Magnetic-flap optical sensor

A magnetic-flap optical sensor has an emitter activated so as to transmit light into a fingertip inserted between an emitter pad and a detector pad. The sensor has a detector responsive to the transmitted light after attenuation by pulsatile blood flow within fingertip so as to generate a detector signal. Flaps extend from the emitter pad and along the sides of a detector shell housing the detector pad. Flap magnets are disposed on the flap ends and shell magnets are disposed on the detector shell sides. A spring urges the emitter shell and detector shell together, so as to squeeze the fingertip between its fingernail and its finger pad. The flap magnets have opposite north and south orientations from the shell magnets, urging the flaps to the detector shell sides and squeezing the fingertip sides. These spring and magnet squeezing forces occlude the fingertip blood flow and accentuate a detector signal responsive to an active pulsing of the fingertip.
Owner:MASIMO CORP

Pulse oximeter with motion detection

There is a need for a technique to compensate for, or eliminate, motion-induced artifacts in patient-attached critical care monitoring instruments. Consequently, the invention is directed to improving pulse-oximetry by incorporating additional signals to aid in the triggering of the pulse-oximeter or in analyzing the data received by the pulse oximeter. This includes detecting when the patient moves and analyzing the pulse-oximetry data in light of the detected movement.
Owner:OPTICAL SENSORS

Fold flex circuit for lnop

Various sensors and methods of assembling sensors are described. In some embodiments, the sensor assembly includes a first end, a body portion, and a second end. The first end can include a neck portion and a connector portion and the second end can include a flap, a first component, a neck portion, and a second component. A method is also described for sensor folding. The method can include using a circuit with an attached emitter and a detector that is separated by a portion of the circuit. The method can also include folding the portion of the circuit such that a first fold is created through the emitter and folding the portion of the circuit such that a second fold is created such that the first fold and second fold form an angle.
Owner:MASIMO CORP

Imaging probe with combined ultrasounds and optical means of imaging

The present invention provides an imaging probe for imaging mammalian tissues and structures using high resolution imaging, including high frequency ultrasound and optical coherence tomography. The imaging probes structures using high resolution imaging use combined high frequency ultrasound (IVUS) and optical imaging methods such as optical coherence tomography (OCT) and to accurate co-registering of images obtained from ultrasound image signals and optical image, signals during scanning a region of interest.
Owner:SUNNYBROOK HEALTH SCI CENT

Light-Guiding Devices and Monitoring Devices Incorporating Same

A monitoring device configured to be attached to the ear of a person includes a base, an earbud housing extending outwardly from the base that is configured to be positioned within an ear of a subject, and a cover surrounding the earbud housing. The base includes a speaker, an optical emitter, and an optical detector. The cover includes light transmissive material that is in optical communication with the optical emitter and the optical detector and serves as a light guide to deliver light from the optical emitter into the ear canal of the subject wearing the device at one or more predetermined locations and to collect light external to the earbud housing and deliver the collected light to the optical detector.
Owner:VALENCELL INC

Methods and apparatus for positioning and retrieving information from a plurality of brain activity sensors

A system for acquiring brain activity data that includes a combined mechanical support frame and signal transmission network structure that consists of a plurality of intersecting, mechanically connected rails, each of which houses electrical signal and power distribution conductors. The conductors in the rails interconnect a variety of different functional node devices that are mechanically supported at adjustable positions on the rails. Each of the nodes houses functional components and include data nodes for acquiring brain activity data, a host node for receiving data from the data nodes and relaying information to an external device, a power node for supplying operating power to the other nodes. The position of the rails may be adjusted relative to each other, and the position of each node may adjusted on the rail upon which it is mounted. The data nodes include retractable probes which may be moved toward or away from the head to position electrodes or other sensors at precise desired locations on the head.
Owner:MEDIA LAB EURO

Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy

The invention involves the monitoring of a biological parameter through a compact analyzer. The preferred apparatus is a spectrometer based system that is attached continuously or semi-continuously to a human subject and collects spectral measurements that are used to determine a biological parameter in the sampled tissue. The preferred target analyze is glucose. The preferred analyzer is a near-IR based glucose analyzer for determining the glucose concentration in the body.
Owner:GLT ACQUISITION

Appendage Mountable Electronic Devices COnformable to Surfaces

Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and / or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS

Stacked adhesive optical sensor

An optical sensor having a cover layer, an emitter disposed on a first side of the cover, a detector disposed on the first side of said cover, and a plurality of stacked independent adhesive layers disposed on the same first side of the cover, wherein the top most exposed adhesive layer is attached to a patient's skin. Thus, when the sensor is removed to perform a site check of the tissue location, one of the adhesive layers may also be removed and discarded, exposing a fresh adhesive surface below for re-attachment to a patient's skin. The independent pieces of the adhesive layers can be serially used to extend the useful life of the product.
Owner:TYCO HEALTHCARE GRP LP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products