Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

39results about How to "Design and fabrication is facilitated" patented technology

High brightness optical device

There is provided an optical device, composed of a display source (4), an imaging optical module (8), a projection module (12) having a projection mechanism including an input aperture (10) and output aperture (14) defined by a surface area, and an exit pupil (16). The projection mechanism is non-uniform over the area of the output aperture (14).
Owner:LUMUS LTD

Substrate-guided optical device with wide aperture

There is provided an optical device, having a light transmitting substrate (20) including at least two major surfaces parallel to each other and edges; optical means (16) for coupling light into the substrate by internal reflection and at least one reflecting, surface (22) located in the substrate which is non-parallel to the major surfaces of the substrate (20) characterized in that the optical means (16) for coupling light into the substrate is a partially reflecting surface, wherein part of the light coupled into the substrate (20) passes through the partially reflecting surface (16) out of the substrate and part of the light is reflected into the substrate (20).
Owner:LUMUS LTD

Substrate-Guide Optical Device Utilizing Polarization Beam Splitters

There is provided an optical device, including a light waves-transmitting substrate having two major surfaces and edges, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate wherein the partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate, and wherein one or more of the partially reflecting surfaces (22a, 22b) is an anisotropic surface.
Owner:LUMUS LTD

Substrate-Guided Optical Device Utilzing Thin Transparent Layer

There is provided an optical device, including a light-transmitting substrate having two major surfaces and edges, an optical element (16) for coupling light waves into the substrate by total internal reflexion, and a plurality of partially reflecting surfaces (22a, 22b, 22c) carried by the substrate. The partially reflecting surfaces are parallel to each other and are not parallel to any of the edges of the substrate. At least one of the partially reflecting surfaces (22a, 22b, 22c) does not intersect with at least one of the two major surfaces, and the optical element (16) intersects with at least one of the two major surfaces.
Owner:LUMUS LTD

Substrate-Guided Optical Device with Wide Aperture

There is provided an optical device, having a light-transmitting substrate (20) including at least two major surfaces parallel to each other and edges; optical means (16) for coupling light into the substrate by internal reflection, and at least one reflecting, surface (22) located in the substrate which is non-parallel to the major surfaces of the substrate (20) characterized in that the optical means (16) for coupling light into the substrate is a partially reflecting surface, wherein part of the light coupled into the substrate (20) passes through the partially reflecting surface (16) out of the substrate and part of the light is reflected into the substrate (20).
Owner:LUMUS LTD

Substrate-guided optical device utilizing thin transparent layer

There is provided an optical device, including a light-transmitting substrate having two major surfaces and edges, an optical element (16) for coupling light waves into the substrate by total internal reflexion, and a plurality of partially reflecting surfaces (22a, 22b, 22c) carried by the substrate. The partially reflecting surfaces are parallel to each other and are not parallel to any of the edges of the substrate. At least one of the partially reflecting surfaces (22a, 22b, 22c) does not intersect with at least one of the two major surfaces, and the optical element (16) intersects with at least one of the two major surfaces.
Owner:LUMUS LTD

Substrate-guided optical device particularly for vision enhanced optical systems

There is provided an optical system, including a mechanical body (110), a light-transmitting substrate (20) having two major surfaces and edges, embedded in the mechanical body, an optical element (90) for coupling light into the substrate by total internal reflection and a plurality of partially reflecting surfaces (22) carried by the substrate, wherein the partially reflecting surfaces are parallel to each other and are not parallel to any of the edges of the substrate. The system also includes an image capturing device (112), a display source (4), and an image-processing unit (114). The image-capturing device (112) is connected via the image-processing unit (114) to the display source (4).
Owner:LUMUS LTD

Substrate-guided imaging lens

There is provided an optical system, including a substrate having a major surface and edges, an optical element for coupling light into the substrate by total internal reflection, a reflecting surface carried by the substrate, a retardation plate and a reflecting optical element. The retardation plate is located between a portion of the major surface of the substrate and the reflecting optical element.
Owner:LUMUS LTD

Polarizing Optical System

There is provided an optical system, including a light-transmitting substrate having at least two major surfaces parallel to each other and edges, and an optical device for coupling light into the substrate by total internal reflection. The device includes a polarization sensitive reflecting surface.
Owner:LUMUS LTD

Substrate-Guided Optical Device Particularly for Vision Enhanced Optical Systems

There is provided an optical system, including a mechanical body (110), a light-transmitting substrate (20) having two major surfaces and edges, embedded in the mechanical body, an optical element (90) for coupling light into the substrate by total internal reflection and a plurality of partially reflecting surfaces (22) carried by the substrate, wherein the partially reflecting surfaces are parallel to each other and are not parallel to any of the edges of the substrate. The system also includes an image capturing device (112), a display source (4), and an image-processing unit (114). The image-capturing device (112) is connected via the image-processing unit (114) to the display source (4).
Owner:LUMUS LTD

Substrate-guide optical device

An optical device, including a light waves-transmitting substrate has two major surfaces and edges, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate. The partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate, one or more of the partially reflecting surfaces (22a, 22b) being an anisotropic surface. The optical device has dual operational modes in see-through configuration. In a first mode, light waves are projected from a display source through the substrate to an eye of a viewer. In a second mode, the display source is shut off and only an external scene is viewable through the substrate.
Owner:LUMUS LTD

Substrate-guide optical device utilizing polarization beam splitters

An optical device including a light waves-transmitting substrate having two major surfaces and edges, has optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate. The partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate. One or more of the partially reflecting surfaces (22a, 22b) is an anisotropic surface.
Owner:LUMUS LTD

Substrate-guided imaging lens

There is provided an optical system, including a substrate having a major surface and edges, an optical element for coupling light into the substrate by total internal reflection, a reflecting surface carried by the substrate, a retardation plate and a reflecting optical element. The retardation plate is located between a portion of the major surface of the substrate and the reflecting optical element.
Owner:LUMUS LTD

Substrate-Guide Optical Device

There is provided an optical device, including a light waves-transmitting substrate having two major surfaces and edges, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate wherein the partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate, and wherein one or more of the partially reflecting surfaces (22a, 22b) is an anisotropic surface.
Owner:LUMUS LTD

Polarizing optical system

There is provided an optical system, including a light-transmitting substrate having at least two major surfaces parallel to each other edges, and an optical device for coupling light into the substrate by total internal reflection. The device includes a polarization sensitive reflecting surface.
Owner:LUMUS LTD

Flexible EMAT Arrays for Monitoring Corrosion and Defect Propagation in Metal Components and Structures

The invention pertains to the design, arrangement and fabrication of arrays of electromagnetic acoustic transducers (EMATs) for detection and monitoring of defects in metal components while they are being used in service. Emphasis is placed on printed circuit sensor coil designs that are attached to and covered with thin, flexible and insulating substrates. This laminated construction with additional means for electrical and thermal insulation, radiation heat shielding and simple cooling provides for consistent and reliable EMAT performance in monitoring components at elevated temperatures. The arrays include circular spiral coils, elongated spiral (racetrack) coils and rectangular spiral coils. Also described are arrays of dual-rectangular (butterfly) coils, meander coils and trapezoidal coils. Various assembly designs for the attachment of bias magnets are described.
Owner:LOPEZ JAUREGUI BORJA

Compact head-mounted display system having uniform image

There is disclosed an optical device, including a light-transmitting substrate having an input aperture, an output aperture, at least two major surfaces and edges, an optical element for coupling light waves into the substrate by total internal reflection, at least one partially reflecting surface located between the two major surfaces of the light-transmitting substrate for partially reflect ing light waves out of the substrate, a first transparent plate, having at least two major surfaces, one of the major surfaces of the transparent plate being optically attached to a major surface of the light-transmitting substrate defining an interface plane, and a beam-splitting coating applied at the interface plane between the substrate and the transparent plate, wherein light waves coupled in side the light-transmitting substrate are partially reflected from the interface plane and partially pass therethrough.
Owner:LUMUS LTD

Polarizing optical system

There is provided an optical system, including a light-transmitting substrate having at least two major surfaces parallel to each other edges, and an optical device for coupling light into the substrate by total internal reflection. The device includes a polarization sensitive reflecting surface.
Owner:LUMUS LTD

Active matrix device and method of driving

ActiveUS20170076676A1Improve linearityReducing complexity and number of transistorStatic indicating devicesLaboratory glasswaresDielectricActive matrix
An active matrix electro-wetting on dielectric (AM-EWOD) device includes a plurality of array elements arranged in an array, each of the array elements including array element circuitry, an element electrode, and a reference electrode. The array element circuitry includes an actuation circuit configured to apply actuation voltages to the electrodes, and an impedance sensor circuit configured to sense impedance at the array element electrode to determine a droplet property at the array element. The impedance sensor circuit is operated by perturbing a potential applied to the reference electrode. The AM-EWOD device includes a common row addressing line. The impedance sensor circuit further is operated by supplying voltage signals over the common addressing line to effect both a reset operation and an operation for selecting a row in the array to be sensed. The circuitry isolates the array element from the actuation voltage during operating the impedance sensor circuit.
Owner:SHARP LIFE SCI EU LTD

Polarizing optical system

There is provided an optical system, including a light-transmitting substrate having at least two major surfaces parallel to each other edges, and an optical device for coupling light into the substrate by total internal reflection. The device includes a polarization sensitive reflecting surface.
Owner:LUMUS LTD

Compact head-mounted display system having uniform image

There is disclosed an optical device, including a light-transmitting substrate having an input aperture, an output aperture, at least two major surfaces and edges, an optical element for coupling light waves into the substrate by total internal reflection, at least one partially reflecting surface located between the two major surfaces of the light-transmitting substrate for partially reflecting light waves out of the substrate, a first transparent plate, having at least two major surfaces, one of the major surfaces of the transparent plate being optically attached to a major surface of the light-transmitting substrate defining an interface plane, and a beam-splitting coating applied at the interface plane between the substrate and the transparent plate, wherein light waves coupled inside the light-transmitting substrate are partially reflected from the interface plane and partially pass therethrough.
Owner:LUMUS LTD

Light guide optical device

The invention provides an optical device, including a light-transmitting substrate, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces carried by the substrate, characterized in that the partially reflecting surfaces are parallel to each other and are not parallel to any of the edges of the substrate.
Owner:LUMUS LTD

Active matrix device and method of driving

An active matrix electro-wetting on dielectric (AM-EWOD) device includes a plurality of array elements arranged in an array, each array element including array element circuitry, an element electrode, and a reference electrode. The array element circuitry includes an actuation circuit configured to apply actuation voltages to the electrodes, and an impedance sensor circuit configured to sense impedance at the array element electrode to determine a droplet property. The actuation circuitry includes a memory capacitor for storing voltage data corresponding to either an actuated state or an unactuated state of the array element, and an input applied to the memory capacitor operates to effect an operation of the impedance sensor circuit. Such input may isolate the array element from the actuation voltage during operation of the impedance sensor circuit, and the memory capacitor may operate as part of the impedance sensor circuit as a reference capacitor for determining the droplet property.
Owner:SHARP LIFE SCI EU LTD

Active matrix device and method of driving

An active matrix electro-wetting on dielectric (AM-EWOD) device includes a plurality of array elements arranged in an array, each of the array elements including array element circuitry, an element electrode, and a reference electrode. The array element circuitry includes an actuation circuit configured to apply actuation voltages to the electrodes, and an impedance sensor circuit configured to sense impedance at the array element electrode to determine a droplet property at the array element. The impedance sensor circuit is operated by perturbing a potential applied to the reference electrode. The AM-EWOD device includes a common row addressing line. The impedance sensor circuit further is operated by supplying voltage signals over the common addressing line to effect both a reset operation and an operation for selecting a row in the array to be sensed. The circuitry isolates the array element from the actuation voltage during operating the impedance sensor circuit.
Owner:SHARP LIFE SCI EU LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products