Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

7020results about "Specific gravity measurement" patented technology

Thermostat incorporating thin film carbon dioxide sensor and environmental control system

A system for monitoring and modifying the quality and temperature of air within a conditioned space includes a blower unit, a damper unit for selectively admitting outside air into the conditioned space, a temperature moderating unit and a control unit. The control unit includes a thermostat and conventional temperature control apparatus for selectively activating the temperature moderating unit to maintain the desired temperature in the conditioned space. The control unit also incorporates CO2 concentration measuring and control apparatus which includes a small CO2 sensor. The CO2 sensor includes a cathode, an anode and a solid electrolyte disposed intermediate and electrically in contact with each of the cathode and the anode to effect a primary electrical cell. A heater and a heater thermostat serve to maintain the temperature of the cell at about 250° C. The cathode and anode materials and the chemical composition of the electrolyte are further selected such that the voltage generated across the heated cell varies in accordance with the CO2 concentration. CO2 concentration modifying apparatus is responsive to sensing a first predetermined CO2 concentration for turning on the blower unit and to sensing a second, higher, predetermined CO2 concentration for actuating the damper unit to admit outside air.
Owner:ROSEN HOWARD B +1

Apparatus, systems and methods for detecting and transmitting sensory data over a computer network

A vapor sensing device that is sufficiently small and lightweight to be handheld, and also modular so as to allow the device to be conveniently adapted for use in sensing the presence and concentration of a wide variety of specified vapors. The device provides these benefits using a sensor module that incorporates a sample chamber and a plurality of sensors located on a chip releasably carried within or adjacent to the sample chamber. Optionally, the sensor module can be configured to be releasably plugged into a receptacle formed in the device. Vapors are directed to pass through the sample chamber, whereupon the sensors provide a distinct combination of electrical signals in response to each. The sensors of the sensor module can take the form of chemically sensitive resistors having resistances that vary according to the identity and concentration of an adjacent vapor. These chemically sensitive resistors can each be connected in series with a reference resistor, between a reference voltage and ground, such that an analog signal is established for each chemically sensitive resistor. The resulting analog signals are supplied to an analog-to-digital converter, to produce corresponding digital signals. These digital signals are appropriately analyzed for vapor identification. The device can then subsequently transmit the digital signals over a computer network, such as the Internet, for analysis at a remote location.
Owner:SMITHS DETECTION

Fluid parameter measurement in pipes using acoustic pressures

At least one parameter of at least one fluid in a pipe is measured using a spatial array of acoustic pressure sensors placed at predetermined axial locations along the pipe 12. The pressure sensors provide acoustic pressure signals, which are provided to a signal processing system that determines the speed of sound amix of the fluid (or mixture) in the pipe 12 using acoustic spatial array signal processing techniques. Numerous spatial array processing techniques may be employed to determine the speed of sound amix. The speed of sound amix is provided to another logic system that calculates the percent composition of the mixture, e.g., water fraction, or any other parameter of the mixture or fluid which is related to the sound speed amix. The signal processing system may also determine the Mach number Mx of the fluid. The acoustic pressure signals measured are lower frequency (and longer wavelength) signals than those used for ultrasonic flow meters, and thus are more tolerant to inhomogeneities in the flow. No external source is required and thus may operate using passive listening. The invention will work with arbitrary sensor spacing and with as few as two sensors if certain information is known about the acoustic properties of the system.
Owner:WEATHERFORD TECH HLDG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products