Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

888 results about "Entropy encoding" patented technology

In information theory an entropy encoding is a lossless data compression scheme that is independent of the specific characteristics of the medium. One of the main types of entropy coding creates and assigns a unique prefix-free code to each unique symbol that occurs in the input. These entropy encoders then compress data by replacing each fixed-length input symbol with the corresponding variable-length prefix-free output codeword. The length of each codeword is approximately proportional to the negative logarithm of the probability. Therefore, the most common symbols use the shortest codes.

Reentry into compressed data

Apparatus and methods are provided for entering compressed data streams at selected reentry points to initiate decoding thereby allowing efficient manipulation of the compressed data and minimizing storage requirements. The reentry information preferably includes bit-level pointers and sufficient state information to initialize the decoder properly. This enables decoding without having to resume at independently decodable points, such as JPEG restart markers. For example, in the context of a JPEG image, in addition to the typical information available to the decoder that has been passed in earlier markers, the reentry information for a given MCU boundary may include: a bit-level pointer to the first block's DC Huffman code, the position of the output, and a DC predictor for each component of the MCU. This allows decompression to be performed in the appropriate order to accomplish various data manipulation operations, such as rotation, thus significantly reducing buffering requirements. Reentry information into a compressed data stream can be generated during encoding, decoding, partial encoding, partial decoding, entropy encoding, and/or entropy decoding. In addition, a reentry decoder may quickly interpret the compressed data sufficiently to preserve desired reentry information and discard unneeded output of the decoding process and terminate immediately after the last desired reentry point. This enables buffering of pieces of compressed data with associated reentry information rather than buffering the entire decompressed data. Additionally, when a subset of the reconstructed data is needed the step of recompressing the individual pieces can be avoided by saving reentry information with the associated pieces of compressed data.
Owner:IBM CORP

Method and system for fast context based adaptive binary arithmetic coding

InactiveUS20070040711A1Increasing instruction level parallelismReduces function call overheadCode conversionCharacter and pattern recognitionProcedure callsContext-adaptive variable-length coding
A method for efficient and fast implementation of context-based adaptive binary arithmetic encoding in H.264/AVC video encoders is disclosed. The H.264/AVC video standard supports two entropy coding mechanisms. These include Context Adaptive Binary Arithmetic Coding (CABAC) and Context Adaptive Variable Length Coding (CAVLC). The entropy coding efficiency of CABAC exceeds that of CAVLC by a clear margin. The method further provides techniques that make the implementation of CABAC on digital signal processors (DSPs) and other processing devices significantly faster. In one aspect, the method increases decoupling between the binarization process and the arithmetic encoding process from bit level to single or multiple syntax element(s) level. The binarized data is provided to the arithmetic encoding engine in bulk, thereby significantly reducing the overhead due to procedure calls. In another aspect, a CABAC arithmetic encoding engine format is provided which decreases data writing overhead and better exploits parallelism in the encoding process. This aspect is particularly advantageous to, for example, very long instruction word (VLIW) DSPs and media processors. In yet another aspect, the method discloses efficient CABAC binarization schemes for syntax elements.
Owner:STREAMING NETWORKS PVT

Method and system for entropy coding for scalable video codec

A method, program product and apparatus for encoding a scalable bit stream from the binarization results of a video sequence by selectively encoding syntax elements and avoiding redundancy in coding. The result is a decrease in the size of the compressed bit stream of an enhancement layer. One method includes determining whether a skipping flag in the base layer macro block of the video data is set, and encoding an enhancement layer macro block of the video data, corresponding to the base layer macro block, with a skipping flag only if the base layer macro block skipping flag is set. Another method includes determining which of a plurality of blocks in a base layer macro block contain zero coefficients, generating a coded block pattern (CBP) of an enhancement layer macro block, where the CBP includes a number of digits equal to the number of blocks in said base layer macro block containing only zero coefficients, and then encoding the CBP of the enhancement layer. Yet another method includes encoding a CBP value of a base layer macro block and differentially encoding a CBP value of an enhancement layer macro block relative to the CBP of the base layer macro block. An additional method includes determining the zero-value coefficients in a block of a base layer, determining whether any of the zero-coefficients become non-zero coefficients in a corresponding block in an enhancement layer, and encoding a coding block flag in an enhancement layer based on that determination.
Owner:NOKIA CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products