Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

169 results about "Very long instruction word" patented technology

Very long instruction word (VLIW) refers to instruction set architectures designed to exploit instruction level parallelism (ILP). Whereas conventional central processing units (CPU, processor) mostly allow programs to specify instructions to execute in sequence only, a VLIW processor allows programs to explicitly specify instructions to execute in parallel. This design is intended to allow higher performance without the complexity inherent in some other designs.

Local and global register partitioning in a vliw processor

A Very Long Instruction Word (VLIW) processor having a plurality of functional units includes a multi-ported register file that is divided into a plurality of separate register file segments, each of the register file segments being associated to one of the plurality of functional units. The register file segments are partitioned into local registers and global registers. The global registers are read and written by all functional units. The local registers are read and written only by a functional unit associated with a particular register file segment. The local registers and global registers are addressed using register addresses in an address space that is separately defined for a register file segment / functional unit pair. The global registers are addressed within a selected global register range using the same register addresses for the plurality of register file segment / functional unit pairs. The local registers in a register file segment are addressed using register addresses in a local register range outside the global register range that are assigned within a single register file segment / functional unit pair. Register addresses in the local register range are the same for the plurality of register file segment / functional unit pairs and address registers locally within a register file segment / functional unit pair.
Owner:ORACLE INT CORP

Method and system for fast context based adaptive binary arithmetic coding

InactiveUS20070040711A1Increasing instruction level parallelismReduces function call overheadCode conversionCharacter and pattern recognitionProcedure callsContext-adaptive variable-length coding
A method for efficient and fast implementation of context-based adaptive binary arithmetic encoding in H.264/AVC video encoders is disclosed. The H.264/AVC video standard supports two entropy coding mechanisms. These include Context Adaptive Binary Arithmetic Coding (CABAC) and Context Adaptive Variable Length Coding (CAVLC). The entropy coding efficiency of CABAC exceeds that of CAVLC by a clear margin. The method further provides techniques that make the implementation of CABAC on digital signal processors (DSPs) and other processing devices significantly faster. In one aspect, the method increases decoupling between the binarization process and the arithmetic encoding process from bit level to single or multiple syntax element(s) level. The binarized data is provided to the arithmetic encoding engine in bulk, thereby significantly reducing the overhead due to procedure calls. In another aspect, a CABAC arithmetic encoding engine format is provided which decreases data writing overhead and better exploits parallelism in the encoding process. This aspect is particularly advantageous to, for example, very long instruction word (VLIW) DSPs and media processors. In yet another aspect, the method discloses efficient CABAC binarization schemes for syntax elements.
Owner:STREAMING NETWORKS PVT

Very long instruction word processor structure supporting simultaneous multithreading

The invention provides a very long instruction word processor structure supporting simultaneous multithreading, which comprises at least two parallel instruction processing pipeline structures, wherein each instruction processing pipeline structure comprises an instruction obtaining module, an instruction distribution module and an instruction executing module, a general register file, a floating point register file and a control register file, the instruction obtaining module is used for obtaining instruction information, the instruction distribution module is used for receiving and distributing the instruction information obtained by the instruction obtaining module, and the instruction executing module comprises instruction executing units A, D, M and F which are used for executing the instruction information, the general register file is used for storing executing results of the corresponding executing units A, M and D, and the floating point register file is used for storing executing results of the corresponding executing units D and F. Through the structure, the resources of a processor can be more sufficiently utilized, the threading access efficiency is enhanced, and the processing speed of the processor is improved.
Owner:TSINGHUA UNIV

Method and apparatus for splitting packets in multithreaded VLIW processor

A method and apparatus are disclosed for allocating functional units in a multithreaded very large instruction word (VLIW) processor. The present invention combines the techniques of conventional very long instruction word architectures and conventional multithreaded architectures to reduce execution time within an individual program, as well as across a workload. The present invention utilizes instruction packet splitting to recover some efficiency lost with conventional multithreaded architectures. Instruction packet splitting allows an instruction bundle to be partially issued in one cycle, with the remainder of the bundle issued during a subsequent cycle. The allocation hardware assigns as many instructions from each packet as will fit on the available functional units, rather than allocating all instructions in an instruction packet at one time. Those instructions that cannot be allocated to a functional unit are retained in a ready-to-run register. On subsequent cycles, instruction packets in which all instructions have been issued to functional units are updated from their thread's instruction stream, while instruction packets with instructions that have been held are retained. The functional unit allocation logic can then assign instructions from the newly-loaded instruction packets as well as instructions that were not issued from the retained instruction packets.
Owner:LUCENT TECH INC +1

Artificial intelligent type hydraulic support electric-hydraulic control system

The invention discloses an artificial intelligent type hydraulic support electric-hydraulic control system which comprises a hardware layer, a system layer, a specialist system and a data base. The system conducts communication through a communication bus and adopts a full duplex signal. The system layer comprises management layer Agents and control layer Agents, and each hydraulic support corresponds to a control layer Agent. The specialist system is connected with a communication bus signal, and the data base stores sensing parameters of three machines and is in signal connection with the communication bus. The artificial intelligent type hydraulic support electric-hydraulic control system has the advantages that the system layer calls the current sensing parameters of the three machines saved by the data base, ultra long instruction words are formed finally by calling the sensing parameters of the three machines through the specialist system, the sensing parameters are transmitted to each hydraulic support controller through the communication bus, the control layer Agents make an automatic movement decision on data information, the management layer Agents coordinate movements of the control layer Agents, and intellectualization of the hydraulic support electric-hydraulic control system of a whole fully mechanized coal mining face is achieved.
Owner:CHINA UNIV OF MINING & TECH +1

Methods and apparatus for dynamic very long instruction word sub-instruction selection for execution time parallelism in an indirect very long instruction word processor

A pipelined data processing unit includes an instruction sequencer and n functional units capable of executing n operations in parallel. The instruction sequencer includes a random access memory for storing very-long-instruction-words (VLIWs) used in operations involving the execution of two or more functional units in parallel. Each VLIW comprises a plurality of short-instruction-words (SIWs) where each SIW corresponds to a unique type of instruction associated with a unique functional unit. VLIWs are composed in the VLIW memory by loading and concatenating SIWs in each address, or entry. VLIWs are executed via the execute-VLIW (XV) instruction. The iVLIWs can be compressed at a VLIW memory address by use of a mask field contained within the XV1 instruction which specifies which functional units are enabled, or disabled, during the execution of the VLIW. The mask can be changed each time the XV1 instruction is executed, effectively modifying the VLIW every time it is executed. The VLIW memory (VIM) can be further partitioned into separate memories each associated with a function decode-and-execute unit. With a second execute VLIW instruction XV2, each functional unit's VIM can be independently addressed thereby removing duplicate SIWs within the functional unit's VIM. This provides a further optimization of the VLIW storage thereby allowing the use of smaller VLIW memories in cost sensitive applications.
Owner:ALTERA CORP

Long instruction word controlling plural independent processor operations

A data processing apparatus including a multiplier unit forming a product from L bits of each two data buses of N bits each N is greater than L. The multiplier forms a N bit output having a first portion which is the L most significant bits of the of product and a second portion which is M other bits not including the L least significant bits of the product, where N is the sum of M and L. In the preferred embodiment the M other bits are derived from other bits of the two input data busses, such as the M other bits of the first input data bus. An arithmetic logic unit performs parallel operations (addition, subtraction, Boolean functions) controlled by the same instructions. This arithmetic logic unit is divisible into a selected number of sections for performing identical operations on independent sections of its inputs. The multiplier unit may form dual products from separate parts of the input data. A single instruction controlling both the multiplier unit and the arithmetic logic unit permits addition of dual products. The dual products are temporarily stored in a data register permitting the multiply and add operations to be pipelined. The dual products are formed in one data word and added by a rotate / mask and add operation in a three input arithmetic unit.
Owner:TEXAS INSTR INC

Processor device and loop processing method thereof

InactiveCN102508635AAchieving Zero Overhead for LoopsImprove performanceMachine execution arrangementsLoop controlVolume body
The invention discloses a VLIW (Very Long Instruction Word) processor device and a loop processing method thereof. The VLIW processor device comprises a loop unit, an address sending unit and an instruction decoding unit, wherein the loop unit comprises a loop volume data calculating module, a loop counting module, a memory module and an instruction fetching address calculating module. The loop processing method comprises the following steps of: obtaining a loop mark instruction; extracting a loop parameter carried in the loop mark (LP) instruction; obtaining and storing loop volume data according to the address of the loop mark instruction and the loop parameter; taking the stored loop volume body data as current loop volume data; obtaining and executing the instruction according to a current instruction fetching address; and obtaining a next instruction fetching address according to the current instruction fetching address, and obtaining the current instruction fetching address by comparing the next instruction fetching address with the loop volume data. The problems that the loop control of a VLIW processor cannot be completely realized by hardware and the loop execution expense is high are solved, therefore, the performance of the VLIW processor is greatly increased.
Owner:INST OF ACOUSTICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products