Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

634 results about "Instruction stream" patented technology

Method and system for triggering a debugging unit

A processor core for transitioning a debugging unit between a plurality of operating states in response to an instruction stream is disclosed. The processor core generates trace data as it processes operating signals of the instruction stream. The processor core provides a first trigger event signal to the debugging unit in response to a first trigger instruction signal within the instruction stream that is representative of a triggering instruction to transitions the debugging unit to a base operating state. The processor core provides a second trigger event signal to the debugging unit in response to a second trigger instruction signal within the instruction stream that is representative of a triggering instruction to dynamically store trace data within the memory component of the debugging unit. The processor core provides a third trigger event signal to the debugging unit in response to a third trigger instruction signal within the instruction stream that is representative of a triggering instruction to statically store trace data within the memory component of the debugging unit. Concurrently or alternatively, the processor core can provide one or more of the trigger event signals to the debugging unit as a function of a generated trigger data in response to additional operational instructions within the instruction stream.
Owner:IBM CORP

Binary translator with precise exception synchronization mechanism

A source computer system with one instruction set architecture (ISA) is configured to run on a target hardware system that has its own ISA, which may be the same as the source ISA. In cases where the source instructions cannot be executed directly on the target system, the invention provides binary translation system. During execution from binary translation, however, both synchronous and asynchronous exceptions may arise. Synchronous exceptions may be either transparent (requiring processing action wholly within the target computer system) or non-transparent (requiring processing that alters a visible state of the source system). Asynchronous exceptions may also be either transparent or non-transparent, in which case an action that alters a visible state of the computer system needs to be applied. The invention includes subsystems, and related methods of operation, for detecting the occurrence of all of these types of exceptions, to handle them, and to do so with precise reentry into the interrupted instruction stream; by “precise” is meant that the atomic execution of the source instructions is guaranteed, and that the application of actions, including those that originate from asynchronous exceptions, occurs at the latest at the completion of the current source instruction at the time of the request for the action. The binary translation and exception-handling subsystems are preferably included as components of a virtual machine monitor which is installed between the target hardware system and the source system, which is preferably a virtual machine.
Owner:VMWARE INC

Load lookahead prefetch for microprocessors

The present invention allows a microprocessor to identify and speculatively execute future load instructions during a stall condition. This allows forward progress to be made through the instruction stream during the stall condition which would otherwise cause the microprocessor or thread of execution to be idle. The data for such future load instructions can be prefetched from a distant cache or main memory such that when the load instruction is re-executed (non speculative executed) after the stall condition expires, its data will reside either in the L1 cache, or will be enroute to the processor, resulting in a reduced execution latency. When an extended stall condition is detected, load lookahead prefetch is started allowing speculative execution of instructions that would normally have been stalled. In this speculative mode, instruction operands may be invalid due to source loads that miss the L1 cache, facilities not available in speculative execution mode, or due to speculative instruction results that are not available via forwarding and are not written to the architected registers. A set of status bits are used to dynamically keep track of the dependencies between instructions in the pipeline and a bit vector tracks invalid architected facilities with respect to the speculative instruction stream. Both sources of information are used to identify load instructions with valid operands for calculating the load address. If the operands are valid, then a load prefetch operation is started to retrieve data from the cache ahead of time such that it can be available for the load instruction when it is non-speculatively executed.
Owner:INTEL CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products