Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

494 results about "Opcode" patented technology

In computing, an opcode (abbreviated from operation code, also known as instruction syllable, instruction parcel or opstring) is the portion of a machine language instruction that specifies the operation to be performed. Beside the opcode itself, most instructions also specify the data they will process, in the form of operands. In addition to opcodes used in the instruction set architectures of various CPUs, which are hardware devices, they can also be used in abstract computing machines as part of their byte code specifications.

Fast just-in-time (JIT) scheduler

A just-in-time (JIT) compiler typically generates code from bytecodes that have a sequence of assembly instructions forming a "template". It has been discovered that a just-in-time (JIT) compiler generates a small number, approximately 2.3, assembly instructions per bytecode. It has also been discovered that, within a template, the assembly instructions are almost always dependent on the next assembly instruction. The absence of a dependence between instructions of different templates is exploited to increase the size of issue groups using scheduling. A fast method for scheduling program instructions is useful in just-in-time (JIT) compilers. Scheduling of instructions is generally useful for just-in-time (JIT) compilers that are targeted to in-order superscalar processors because the code generated by the JIT compilers is often sequential in nature. The disclosed fast scheduling method has a complexity, and therefore an execution time, that is proportional to the number of instructions in an instruction block (N complexity), a substantial improvement in comparison to the N2 complexity of conventional compiler schedulers. The described fast scheduler advantageously reorders instructions with a single pass, or few passes, through a basic instruction block while a conventional compiler scheduler such as the DAG scheduler must iterate over an instruction basic block many times. A fast scheduler operates using an analysis of a sliding window of three instructions, applying two rules within the three instruction window to determine when to reorder instructions. The analysis includes acquiring the opcodes and operands of each instruction in the three instruction window, and determining register usage and definition of the operands of each instruction with respect to the other instructions within the window. The rules are applied to determine ordering of the instructions within the window.
Owner:ORACLE INT CORP

Microprocessor instruction format using combination opcodes and destination prefixes

The present application discloses an instruction format for storing multiple microprocessor instructions as one combined instruction. The instruction format includes a combination opcode field for storing a combination opcode that identifies a combination of the multiple instructions. The application also discloses an instruction format that uses prefix fields to specify the destination functional block for each combined instruction stored in an execute packet. A compiler program or an assembler program obtains from a table a combination opcode that corresponds to a combination of the multiple instructions. The table stores combination opcodes and their corresponding combinations of instructions. The compiler program or assembler program then assigns the found combination opcode to an opcode field of the combined instruction. In a trivial scenario, a single instruction can also be stored as a combined instruction. The compiler program or assembler program also uses prefix fields to identify the destination functional block of each combined instruction in an execute packet. A dispatcher identifies the prefix fields and sends each combined instruction in the execute packet to its destination functional block. An instruction decoder identifies the combination opcode of the combined instruction, separates the combined instruction into the multiple individual instructions, and sends each individual instruction to its respective functional unit for execution.
Owner:AVAZ NETWORKS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products