Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

304 results about "Instruction decoder" patented technology

Instruction decoder. The instruction decoder of a processor is a combinatorial circuit sometimes in the form of a read-only memory, sometimes in the form of an ordinary combinatorial circuit. Its purpose is to translate an instruction code into the address in the micro memory where the micro code for the instruction starts.

Data processing apparatus and method for performing rearrangement operations

A data processing apparatus and method are provided for performing rearrangement operations. The data processing apparatus has a register data store with a plurality of registers, each register storing a plurality of data elements. Processing circuitry is responsive to control signals to perform processing operations on the data elements. An instruction decoder is responsive to at least one but no more than N rearrangement instructions, where N is an odd plural number, to generate control signals to control the processing circuitry to perform a rearrangement process at least equivalent to: obtaining as source data elements the data elements stored in N registers of said register data store as identified by the at least one re-arrangement instruction; performing a rearrangement operation to rearrange the source data elements between a regular N-way interleaved order and a de-interleaved order in order to produce a sequence of result data elements; and outputting the sequence of result data elements for storing in the register data store. This provides a particularly efficient technique for performing N-way interleave and de-interleave operations, where N is an odd number, resulting in high performance, low energy consumption, and reduced register use when compared with known prior art techniques.
Owner:ARM LTD

Display devices and integrated circuits

Integrated circuits, assemblies with integrated circuits, display devices and electrical circuits. There are various different aspects and embodiments of these apparatuses described herein. According to one aspect, a display device includes a plurality of display drivers which includes a serial shift register, wherein the display drivers are located in the display area of the display device which is viewable. According to another aspect, an integrated circuit, which has a plurality of functionally symmetric interface pads, includes an instruction decoder which decodes instructions received through at least one of the pads. In another aspect, an integrated circuit (IC) includes a position detector which detects a position of the IC relative to a receptor substrate and provides a signal which is determined by the position; this IC may be used in an assembly which includes the receptor substrate. In another aspect, an IC includes a position detector which detects a position of the IC relative to a receptor substrate and also includes a configurable pad which is configurable, depending upon the position as one of at least two of the following: an input pad, an output pad, or a no-operation pad. According to another aspect, a layout of an IC has a plurality of functionally symmetric interface pads wherein two such pads are configurable pads. According to another aspect, an assembly includes a receptor substrate and an IC attached to the substrate, and the IC includes a first logic circuit which provides a first function, a second logic circuit which provides a second function, and a selector which selects between the two functions such that the IC performs only the selected function. Other aspects and methods are also described.
Owner:RUIZHANG TECH LTD CO

Display devices and integrated circuits

Integrated circuits, assemblies with integrated circuits, display devices and electrical circuits. There are various different aspects and embodiments of these apparatuses described herein. According to one aspect, a display device includes a plurality of display drivers which includes a serial shift register, wherein the display drivers are located in the display area of the display device which is viewable. According to another aspect, an integrated circuit, which has a plurality of functionally symmetric interface pads, includes an instruction decoder which decodes instructions received through at least one of the pads. In another aspect, an integrated circuit (IC) includes a position detector which detects a position of the IC relative to a receptor substrate and provides a signal which is determined by the position; this IC may be used in an assembly which includes the receptor substrate. In another aspect, an IC includes a position detector which detects a position of the IC relative to a receptor substrate and also includes a configurable pad which is configurable, depending upon the position as one of at least two of the following: an input pad, an output pad, or a no-operation pad. According to another aspect, a layout of an IC has a plurality of functionally symmetric interface pads wherein two such pads are configurable pads. According to another aspect, an assembly includes a receptor substrate and an IC attached to the substrate, and the IC includes a first logic circuit which provides a first function, a second logic circuit which provides a second function, and a selector which selects between the two functions such that the IC performs only the selected function. Other aspects and methods are also described.
Owner:RUIZHANG TECH LTD CO

Data processing apparatus and method for performing arithmetic operations in SIMD data processing

A data processing apparatus, method and a computer program product. A data processing apparatus comprising: a register data store operable to store data elements; an instruction decoder operable to decode an arithmetic returning high half instruction; a data processor operable to perform data processing operations controlled by said instruction decoder wherein: in response to said decoded arithmetic returning high half instruction, said data processor is operable to specify within said register data store, one or more source registers operable to store a plurality of source data elements of a first size, and one or more destination registers operable to store a corresponding plurality of resultant data elements of a second size, said second size being half the size of said first size; and to perform the following operations in parallel on said plurality of source data elements to produce said corresponding plurality of resultant data elements: perform an arithmetic operation on said source registers specified by said instruction to produce a plurality of corresponding intermediate result data elements; form said resultant data elements from information derived from a high half of a corresponding one of said plurality of intermediate result data elements; store said resultant data elements in said destination register.
Owner:ARM LTD

Microprocessor instruction format using combination opcodes and destination prefixes

The present application discloses an instruction format for storing multiple microprocessor instructions as one combined instruction. The instruction format includes a combination opcode field for storing a combination opcode that identifies a combination of the multiple instructions. The application also discloses an instruction format that uses prefix fields to specify the destination functional block for each combined instruction stored in an execute packet. A compiler program or an assembler program obtains from a table a combination opcode that corresponds to a combination of the multiple instructions. The table stores combination opcodes and their corresponding combinations of instructions. The compiler program or assembler program then assigns the found combination opcode to an opcode field of the combined instruction. In a trivial scenario, a single instruction can also be stored as a combined instruction. The compiler program or assembler program also uses prefix fields to identify the destination functional block of each combined instruction in an execute packet. A dispatcher identifies the prefix fields and sends each combined instruction in the execute packet to its destination functional block. An instruction decoder identifies the combination opcode of the combined instruction, separates the combined instruction into the multiple individual instructions, and sends each individual instruction to its respective functional unit for execution.
Owner:AVAZ NETWORKS

Processor, multiprocessor system, processor system, information processing apparatus, and temperature control method

InactiveUS20070198134A1Avoid misuseWithout incurring degradation in processor performanceEnergy efficient ICTResource allocationTemperature controlInformation processing
An instruction decoder identifies, for each instruction, an operational block involved in the execution of the instruction and an associated heat release coefficient. The instruction decoder stores identified information in a heat release coefficient profile. An instruction scheduler schedules the instructions in accordance with the dependence of the instructions on data. A heat release frequency adder cumulatively adds the heat release coefficient to the heat release frequency of the operational block held in the operational block heat release frequency register as the execution of the scheduled instructions proceeds. A heat release frequency subtractor subtracts from the heat release frequency of the operational blocks in the operational block heat release frequency register in accordance with heat discharge that occurs with time. A hot spot detector detects an operational block with its heat release frequency, held in the operational block heat release frequency register, exceeding a predetermined threshold value as a hot spot. The instruction scheduler delays the execution of the instruction involving for its execution the operational block identified as a hot spot.
Owner:SONY COMPUTER ENTERTAINMENT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products