Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3121 results about "Data element" patented technology

In metadata, the term data element is an atomic unit of data that has precise meaning or precise semantics. Data elements usage can be discovered by inspection of software applications or application data files through a process of manual or automated Application Discovery and Understanding. Once data elements are discovered they can be registered in a metadata registry.

Data aggregation server for managing a multi-dimensional database and database management system having data aggregation server integrated therein

Improved method of and apparatus for aggregating data elements in multidimensional databases (MDDB). In one aspect of the present invention, the apparatus is realized in the form of a high-performance stand-alone (i.e. external) aggregation server which can be plugged-into conventional OLAP systems to achieve significant improments in system performance. In accordance with the principles of the present invention, the stand-alone aggregation server contains a scalable MDDB and a high-performance aggregation engine that are integrated into the modular architecture of the aggregation server. The stand-alone aggregation server of the present invention can uniformly distribute data elements among a plurality of processors, for balanced loading and processing, and therefore is highly scalable. The stand-alone aggregation server of the present invention can be used to realize (i) an improved MDDB for supporting on-line analytical processing (OLAP) operations, (ii) an improved Internet URL Directory for supporting on-line information searching operations by Web-enabled client machines, as well as (iii) diverse types of MDDB-based systems for supporting real-time control of processes in response to complex states of information reflected in the MDDB. In another aspect of the present invention, the apparatus is integrated within a database management system (DBMS). The improved DBMS can be used to realize achieving a significant increase in system performance (e.g. deceased access/search time), user flexibility and ease of use. The improved DBMS system of the present invention can be used to realize an improved Data Warehouse for supporting on-line analytical processing (OLAP) operations or to realize an improved informational database system, operational database system, or the like.
Owner:YANICKLO TECH LIABILITY +1

Query language for unstructed data

A system and methods are provided for interactive construction of data queries. One method comprises: generating a query based upon a plurality of user-identified data items, wherein the user-identified data items are data items representing desired results from a query, and wherein information related to the user-identified data items is included in a “given” clause of the query, assigning received input data to a hierarchical set of categories, presenting to a user a plurality of new query results, wherein the plurality of new query results are determined by scanning the received input data to find data elements in the same hierarchical categories as those in the “given” query clause and not in the same hierarchical categories as those of an “unlike” clause of the query, receiving from the user an indication as to whether each query result of the presented plurality of new query results is a desirable query result, adding query results indicated by the user as desirable to the “given” clause of the query, adding query results indicated by the user as undesirable to the “unlike” clause of the query, evaluating a metric indicative of the accuracy of the query, and responsive to a determination that the query achieves a predetermined threshold level of accuracy, storing the query.
Owner:COGNITIVE ELECTRONICS INC

System for providing alert-based services to mobile stations in a wireless communications network

System for providing alert-based communication services for which corresponding alert conditions to be met by mobile stations are defined. The system includes an alert engine capable of firing alerts associated with the alert-based communication services if location data regarding the mobile stations is indicative of the mobile stations meeting the alert conditions corresponding to the alert-based communication services. A requirements engine is provided for determining an expected earliest future time at which at least one alert condition is capable of being met by a particular mobile station and outputting a data element indicative of a requirement to obtain updated location data about the particular mobile station in advance of the expected earliest future time. Also provided is a scheduler for receiving expiry times data indicative of a plurality of expiry times relating to respective location requests, processing the expiry times data for determining an order for servicing the location requests by positioning determining equipment (PDE) at least in part on a basis on the expiry times of the location requests and an output for interfacing with the PDE, allowing it to service the location requests according to the order determined.
Owner:SMITH MICRO SOFTWARE LLC

Method of and system for managing multi-dimensional databases using modular-arithmetic based address data mapping processes on integer-encoded business dimensions

An improved method of and a system for managing data elements in a multidimensional database (MDB) supported upon a parallel computing platform using modular-arithmetic based address data mapping (i.e. translation) processes on integer-encoded business dimensions. The parallel computing platform has a plurality of processors and one or more storage volumes for physically storing data elements therein at integer-encoded physical addresses in Processor Storage Space (i.e. physical address space in the one or more storage volumes associated with a given processor). The location of each data element in the MDB is specified in MDB Space by integer-encoded business dimensions associated with the data element. A data loading mechanism loads the integer-encoded business dimensions and associated data elements from a data warehouse. The address data mapping mechanism performs a two part address mapping processing. The first step maps the integer-encoded business dimensions associated with each data element to a given processor identifier (which uniquely identifies the processor amongst the plurality of processors of the parallel computing platform). The second step maps the integer-encoded business dimensions associated with each data element into an integer-encoded physical data storage address in Processor Storage Space associated with the processor identified by the processor identifier generated in the first mapping step. The mapping performed in this second step is based upon size of the integer encoded business dimensions. The data management mechanism manages the data elements stored in the storage volumes using the integer-encoded data storage addresses generated during the two-part address data mapping process. The use of modular-arithmetic functions in the two-part address data mapping mechanism ensures that the data elements in the MDB are uniformly distributed among the plurality of processors for balanced loading and processing. The present invention can be used to realize (i) an improved MDB for supporting on-line analytical processing (OLAP) operations, (ii) an improved Internet URL Directory for supporting on-line information searching operations by Web-enabled client machines, as well as (iii) diverse types of MDB-based systems for supporting real-time control of processes in response to complex states of information reflected in the MDB.
Owner:MEC MANAGEMENT LLC +1

System and method for patient-worn monitoring of patients in geographically dispersed health care locations

A patient-worn monitoring system and method for geographically dispersed health care locations. A patient-worn monitoring system comprises a network, a body-worn monitoring station, a monitoring station server, a remote command center, and a rules engine. The network comprises a first sub-network and a second sub-network. The body-worn monitoring station comprises monitoring equipment. The body worn monitoring station monitors data elements from a patient assigned to a health care location and sends monitored data elements to a monitoring station server via the first sub-network. The monitoring station server receives the monitored data elements from the body worn monitoring station and relays the monitored data elements to the remote command center via the second sub-network. The remote command center receives the monitored data elements from the monitoring station server, associates the monitored data elements with the patient assigned to the health care location, accesses patient data elements indicative of a medical condition associated with the patient, and establishes a patient-specific rule associated with the patient. The rules engine selects data elements from the monitored data elements and the patient data elements associated with the patient and applies the patient-specific rule to the selected data elements continuously and simultaneously. A determination is made whether the patient-specific rule for the patient has been contravened. An alert is issued from the remote command center in the event the patient-specific rule for the patient has been contravened.
Owner:VISICU
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products