Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

431 results about "Execution cycle" patented technology

Execution Cycle. The execution cycle represents the remaining machine cycles in the execution of an instruction. The execution cycle may consist of more than one machine cycle. The time required to complete the execution cycle is referred to as execution time. Throughout this cycle, operations are controlled by the instruction register.

Method for selecting active code traces for translation in a caching dynamic translator

A method is shown for selecting active, or hot, code traces in an executing program for storage in a code cache. A trace is a sequence of dynamic instructions characterized by a start address and a branch history which allows the trace to be dynamically disassembled. Each trace is terminated by execution of a trace terminating condition which is a backward taken branch, an indirect branch, or a branch whose execution causes the branch history for the trace to reach a predetermined limit. As each trace is generated by the executing program, it is loaded into a buffer for processing. When the buffer is full, a counter corresponding to the start address of each trace is incremented. When the count for a start address exceeds a threshold, then the start address is marked as being hot. Each hot trace is then checked to see if the next trace in the buffer shares the same start address, in which case the hot trace is cyclic. If the start address of the next trace is not the same as the hot trace, then the traces in the buffer are checked to see they form a larger cycle of execution. If the traces subsequent to the hot trace are not hot themselves and are followed by a trace having the same start address as the hot trace, then their branch histories are companded with the branch history of the hot trace to form a cyclic trace. The cyclic traces are then disassembled and the instructions executed in the trace are stored in a code cache.
Owner:HEWLETT PACKARD DEV CO LP

Branch prediction apparatus and process for restoring replaced branch history for use in future branch predictions for an executing program

Apparatus and methods implemented in a processor semiconductor logic chip for providing novel “hint instructions” that uniquely preserve and reuse branch predictions replaced in a branch history table (BHT). A branch prediction is lost in the BHT after its associated instruction is replaced in an instruction cache. The unique “hint instructions” are generated and stored in a unique instruction cache which associates each hint instruction with a line of instructions. The hint instructions contains the latest branch history for all branch instructions executed in an associated line of instructions, and they are stored in the instruction cache during instruction cache hits in the associated line. During an instruction cache miss in an instruction line, the associated hint instruction is stored in a second level cache with a copy of the associated instruction line being replaced in the instruction cache. In the second level cache, the copy of the line is located through the instruction cache directory entry associated with the line being replaced in the instruction cache. Later, the hint instruction can be retrieved into the instruction cache when its associated instruction line is fetched from the second level cache, and then its associated hint instruction is also retrieved and used to restore the latest branch predictions for that instruction line. In the prior art this branch prediction would have been lost. It is estimated that this invention improves program performance for each replaced branch prediction by about 80%, due to increasing the probability of BHT bits correctly predicting the branch paths in the program from about 50% to over 90%. Each incorrect BHT branch prediction may result in the loss of many execution cycles, resulting in additional instruction re-execution overhead when incorrect branch paths are belatedly discovered.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products