Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1056results about "Next instruction address formation" patented technology

Microprocessors

A processor (100) is provided that is a programmable fixed point digital signal processor (DSP) with variable instruction length, offering both high code density and easy programming. Architecture and instruction set are optimized for low power consumption and high efficiency execution of DSP algorithms, such as for wireless telephones, as well as pure control tasks. The processor includes an instruction buffer unit (106), a program flow control unit (108), an address / data flow unit (110), a data computation unit (112), and multiple interconnecting busses. Dual multiply-accumulate blocks improve processing performance. A memory interface unit (104) provides parallel access to data and instruction memories. The instruction buffer is operable to buffer single and compound instructions pending execution thereof. A decode mechanism is configured to decode instructions from the instruction buffer. The use of compound instructions enables effective use of the bandwidth available within the processor. A soft dual memory instruction can be compiled from separate first and second programmed memory instructions. Instructions can be conditionally executed or repeatedly executed. Bit field processing and various addressing modes, such as circular buffer addressing, further support execution of DSP algorithms. The processor includes a multistage execution pipeline with pipeline protection features. Various functional modules can be separately powered down to conserve power. The processor includes emulation and code debugging facilities with support for cache analysis.
Owner:TEXAS INSTR INC

Reconfigurable data path processor

A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
Owner:STC UNM +1

Systems and methods for downloading algorithmic elements to a coprocessor and corresponding techniques

Systems and methods for downloading algorithmic elements to a coprocessor and corresponding processing and communication techniques are provided. For an improved graphics pipeline, the invention provides a class of co-processing device, such as a graphics processor unit (GPU), providing improved capabilities for an abstract or virtual machine for performing graphics calculations and rendering. The invention allows for runtime-predicated flow control of programs downloaded to coprocessors, enables coprocessors to include indexable arrays of on-chip storage elements that are readable and writable during execution of programs, provides native support for textures and texture maps and corresponding operations in a vertex shader, provides frequency division of vertex streams input to a vertex shader with optional support for a stream modulo value, provides a register storage element on a pixel shader and associated interfaces for storage associated with representing the “face” of a pixel, provides vertex shaders and pixel shaders with more on-chip register storage and the ability to receive larger programs than any existing vertex or pixel shaders and provides 32 bit float number support in both vertex and pixel shaders.
Owner:MICROSOFT TECH LICENSING LLC

Fast stack save and restore system and method

A processor includes a stack that operates as a circular stack and appears to the address space in the memory of the processor as a single point address location. The stack supports read and write data access functions in addition to CALL (push) and RETURN (pop) programming operations. The processor may be programmed to save the stack in a typical manner with one instruction atomically transferring each element in the stack directly from the stack to a save storage. To restore the stack, the processor may be programmed to individually restore each element. The processor supports a special MOV instruction that transfers a plurality of bytes in a single operation. The special MOV instruction has one argument that identifies the beginning transfer source address, another argument defines the byte count indicating the number of bytes to be transferred, and a beginning transfer destination address. The processor may be programmed to perform a stack save operation with only a single instruction that moves the contents of the stack to the save storage. To further reduce context switching time and reduce the stack save and restore operation to a minimum number of instructions while maintaining the proper entry relationship for both stack read and write operations, the processor includes a "stack read forward" option to the special MOV instruction. The option to the special MOV instruction operates to read data in a forward direction even when no valid data is stored in the locations. The read operation begins at the start address specified by an argument to the MOV instruction, reads forward, and wraps around in a binary fashion back to the start address.
Owner:PMC-SIERRA

Central processing unit (CPU) accessing an extended register set in an extended register mode

A central processing unit (CPU) is described including a register file and an execution core coupled to the register file. The register file includes a standard register set and an extended register set. The standard register set includes multiple standard registers, and the extended register set include multiple extended registers. The execution core fetches and executes instructions, and receives a signal indicating an operating mode of the CPU. The execution core responds to an instruction by accessing at least one extended register if the signal indicates the CPU is operating in an extended register mode and the instruction includes a prefix portion including information needed to access the at least one extended register. The standard registers may be general purpose registers of a CPU architecture associated with the instruction. The number of extended registers may be greater than the number of general purpose registers defined by the CPU architecture. In this case, the additional register identification information in the prefix portion is needed to identify a selected one of the extended registers. A width of the extended registers may also be greater than a width of the standard registers. In this case, the prefix portion may also include an indication that the entire contents of the least one extended register is to be accessed. In this way, instruction operand sizes may selectively be increased when the CPU is operating in the extended register mode. A computer system including the CPU is also described.
Owner:GLOBALFOUNDRIES INC

Systems and methods for downloading algorithmic elements to a coprocessor and corresponding techniques

Systems and methods for downloading algorithmic elements to a coprocessor and corresponding processing and communication techniques are provided. For an improved graphics pipeline, the invention provides a class of co-processing device, such as a graphics processor unit (GPU), providing improved capabilities for an abstract or virtual machine for performing graphics calculations and rendering. The invention allows for runtime-predicated flow control of programs downloaded to coprocessors, enables coprocessors to include indexable arrays of on-chip storage elements that are readable and writable during execution of programs, provides native support for textures and texture maps and corresponding operations in a vertex shader, provides frequency division of vertex streams input to a vertex shader with optional support for a stream modulo value, provides a register storage element on a pixel shader and associated interfaces for storage associated with representing the “face” of a pixel, provides vertex shaders and pixel shaders with more on-chip register storage and the ability to receive larger programs than any existing vertex or pixel shaders and provides 32 bit float number support in both vertex and pixel shaders.
Owner:MICROSOFT TECH LICENSING LLC

Shared register architecture for a dual-instruction-set CPU to facilitate data exchange between the instruction sets

A dual-instruction set central processing unit (CPU) is capable of executing instructions from a reduced instruction set computer (RISC) instruction set and from a complex instruction set computer (CISC) instruction set. Data and address information may be to transferred from a CISC program to a RISC program running on the CPU by using shared registers. The architecturally-defined registers in the CISC instruction set are merged or folded into some of the architecturally-defined registers in the RISC architecture so that these merged registers are shared by the two instructions sets. In particular, the flags or condition code registers defined by each architecture are merged together so that CISC instructions and RISC instructions will implicitly update the same merged flags register when performing computational instructions. The RISC and CISC registers are folded together so that the CISC flags are at one end of the register while the frequently used RISC flags are at the other end, but the RISC instructions can read or write any bit in the merged register. The CISC code segment base address is stored in the RISC branch count register, while the CISC floating point instruction address is stored in the RISC branch link register. The general-purpose registers (GPR's) are also merged together, allowing a CISC program to pass data to a RISC program merely by writing one of its GPR's, switching control to the RISC program, and the RISC program reading one of its GPR's that is merged with and corresponds to the CISC GPR that was written to by the CISC program.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products