Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

66results about "Number-of-one counters" patented technology

Microprocessors

A processor (100) is provided that is a programmable fixed point digital signal processor (DSP) with variable instruction length, offering both high code density and easy programming. Architecture and instruction set are optimized for low power consumption and high efficiency execution of DSP algorithms, such as for wireless telephones, as well as pure control tasks. The processor includes an instruction buffer unit (106), a program flow control unit (108), an address / data flow unit (110), a data computation unit (112), and multiple interconnecting busses. Dual multiply-accumulate blocks improve processing performance. A memory interface unit (104) provides parallel access to data and instruction memories. The instruction buffer is operable to buffer single and compound instructions pending execution thereof. A decode mechanism is configured to decode instructions from the instruction buffer. The use of compound instructions enables effective use of the bandwidth available within the processor. A soft dual memory instruction can be compiled from separate first and second programmed memory instructions. Instructions can be conditionally executed or repeatedly executed. Bit field processing and various addressing modes, such as circular buffer addressing, further support execution of DSP algorithms. The processor includes a multistage execution pipeline with pipeline protection features. Various functional modules can be separately powered down to conserve power. The processor includes emulation and code debugging facilities with support for cache analysis.
Owner:TEXAS INSTR INC

A processor with apparatus for verifying instruction parallelism

A processing engine 10 for executing instructions in parallel comprises an instruction buffer 600 for holding at least two instructions, with the first instruction 602 in a first position and the second instruction 604 in a second position. A first decoder 612 provides decoding of the first instruction and generates first control signals. The first control signals include first resource control signals, first address generation control signals, and a first validity signal indicative of the validity of the first instruction in the first position. A second decoder 614 provides decoding of the second instruction and generates second control signals. The second control signals include second resource control signals, second address generation control signals, and a second validity signal indicative of the validity of the second instruction in the second position. Arbitration and merge logic 628, 630 is provided for arbitrating between the first and second control signals and for merging the first and second control signals for controlling power of execution of the instructions in accordance with a set of parallelism rules. A conditional execution unit 634 is responsive to false condition signals from the arbitration and merge logic to inhibit or modify the effect of the control signals. The parallelism rules provide for efficient instruction execution, and the avoidance of resource conflicts.
Owner:TEXAS INSTR INC

Family of low power, regularly structured multipliers and matrix multipliers

A family of embodiments of a new class of CMOS VLSI computer multiplier circuits that are simpler to fabricate, smaller, faster, more efficient in their use of power, and easier to scale in size than the prior art. The normal binary adder circuit unit is replaced by the innovative shift switch circuit unit. Use of the shift switch circuit sharply reduces fluctuations of power caused by plurality variations in the bit representations of the input, intermediate and output numbers. Reduced-scale devices are used in shift-switch pass-transistor signal restoration circuits, significantly reducing the size, power demand, and power dissipation of internal circuitry, in contrast to ordinary multiplier design. The simplicity of the circuit design allows multiplier partial-product reduction in fewer logic stages than existing comparable designs allow, showing speed improvement over such designs. The circuit design simplicity and the use of reduced-scale devices require less VLSI area than existing designs need, facilitating integration in VLSI microprocessors. Modular circuit organization simplifies scaling for larger operands without the circuit complications of existing designs. The design includes a critical flip of the physical layout of the partial-product matrix at each size level, simplifying the layout of traces in the circuit at all size scales. Finally, the application of reconfigurable design principles to the easily-scaled layout reduces significantly the mean demand for computing resources over a wide range of multiplication bit-width scales, as compared to existing designs. Overall, the orchestrated integration of these diverse design innovations makes possible the implementation of simpler, faster, smaller, more efficient, more flexible, and easier-to-build VLSI multiplication circuits than the current art reveals.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Data value addition

A data processing apparatus operable to sum data values said data processing apparatus comprising: a plurality of adder logic stages arranged in parallel with each other; control logic operable in response to receipt of a request to sum two data values to forward portions of said two data values to respective ones of said plurality of adder logic stages, such that a first adder logic stage receives a predetermined number of lowest significant bits from each of said two data values and subsequent adder logic stages receive said predetermined number of successively higher significant bits from each of said two data values, each of said plurality of adder logic stages being operable to perform a carry propagate addition of said received portions to generate an intermediate sum, a propagate value and a carry; and further logic stages operable to receive said intermediate sums, carries and propagate values generated from said plurality of adder logic stages and to combine said received intermediate sums, carries and propagate values to produce a sum of said two data values; wherein said control logic is operable in response to receipt of a request to add a third data value to said sum of said two data values, received before said further logic has completed said sum, to forward portions of said third data value to respective ones of said plurality of adder logic stages and to feedback said intermediate sums generated by said plurality of adder logic stages and to selectively feedback a carry generated from a preceding adder logic stage; and said plurality of adder logic stages are operable to perform a carry propagate addition of said fedback intermediate sums and carrys with respective portions of said third data value to generate a plurality of further intermediate sums, further carrys and further propagate values; and wherein said further logic stages are operable to receive said plurality of further intermediate sums, further carries and further propagate values and to combine said received further intermediate sums, carries and propagate values to produce a sum of said three data values.
Owner:ARM LTD

Dual access instruction and compound memory access instruction with compatible address fields

A processing engine 10 includes an instruction buffer 502 operable to buffer single and compound instructions pending execution. A decode mechanism is configured to decode instructions from the instruction buffer. The decode mechanism is arranged to respond to a predetermined tag in a tag field of an instruction, which predetermined tag is representative of the instruction being a compound instruction formed from separate programmed memory instructions. The decode mechanism is operable in response to the predetermined tag to decode at least first data flow control for a first programmed instruction and second data flow control for a second programmed instruction. The use of compound instructions enables effective use of the bandwidth available within the processing engine. A soft dual memory instruction can be compiled from separate first and second programmed memory instructions. A compound address field of the predetermined compound instruction can be arranged at the same bit positions as the address field for a hard compound memory instruction, that is a compound instruction which is programmed. In this case the decoding of the addresses can be started before the operation code of the instructions have been decoded. To reduce the number of bits in the compound instruction, addressing can be restricted to indirect addressing and the operation codes for at least the first instruction can be reduced in size. In this way, the compound instruction can be arranged to have the same number of bits in total as the sum of the bits of the separate programmed instructions.
Owner:TEXAS INSTR INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products