Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8836results about "Computation using denominational number representation" patented technology

Method for selecting active code traces for translation in a caching dynamic translator

A method is shown for selecting active, or hot, code traces in an executing program for storage in a code cache. A trace is a sequence of dynamic instructions characterized by a start address and a branch history which allows the trace to be dynamically disassembled. Each trace is terminated by execution of a trace terminating condition which is a backward taken branch, an indirect branch, or a branch whose execution causes the branch history for the trace to reach a predetermined limit. As each trace is generated by the executing program, it is loaded into a buffer for processing. When the buffer is full, a counter corresponding to the start address of each trace is incremented. When the count for a start address exceeds a threshold, then the start address is marked as being hot. Each hot trace is then checked to see if the next trace in the buffer shares the same start address, in which case the hot trace is cyclic. If the start address of the next trace is not the same as the hot trace, then the traces in the buffer are checked to see they form a larger cycle of execution. If the traces subsequent to the hot trace are not hot themselves and are followed by a trace having the same start address as the hot trace, then their branch histories are companded with the branch history of the hot trace to form a cyclic trace. The cyclic traces are then disassembled and the instructions executed in the trace are stored in a code cache.
Owner:HEWLETT PACKARD DEV CO LP

Microprocessors

A processor (100) is provided that is a programmable fixed point digital signal processor (DSP) with variable instruction length, offering both high code density and easy programming. Architecture and instruction set are optimized for low power consumption and high efficiency execution of DSP algorithms, such as for wireless telephones, as well as pure control tasks. The processor includes an instruction buffer unit (106), a program flow control unit (108), an address / data flow unit (110), a data computation unit (112), and multiple interconnecting busses. Dual multiply-accumulate blocks improve processing performance. A memory interface unit (104) provides parallel access to data and instruction memories. The instruction buffer is operable to buffer single and compound instructions pending execution thereof. A decode mechanism is configured to decode instructions from the instruction buffer. The use of compound instructions enables effective use of the bandwidth available within the processor. A soft dual memory instruction can be compiled from separate first and second programmed memory instructions. Instructions can be conditionally executed or repeatedly executed. Bit field processing and various addressing modes, such as circular buffer addressing, further support execution of DSP algorithms. The processor includes a multistage execution pipeline with pipeline protection features. Various functional modules can be separately powered down to conserve power. The processor includes emulation and code debugging facilities with support for cache analysis.
Owner:TEXAS INSTR INC

Method and system in a computer network for the reliable and consistent ordering of client requests

A method and system for reliably and consistently delivering client requests in a computer network having at least one client connectable to one or more servers among a group of servers, wherein each server among the group of servers replicates a particular network service to ensure that the particular network service remains uninterrupted in the event of a server failure. A particular server is designated among the group of servers to manage client requests which seek to update a particular network service state, prior to any receipt of a client request which seeks to update the particular network service state by any remaining servers among the group of servers. Thereafter, an executable order is specified in which client requests which seek to update the particular network service state are processed among the remaining servers, such that the executable order, upon execution, sequences the client request which seeks to update the particular network service state with respect to all prior and subsequent client requests. The executable order and the client request which seeks to update the particular network service state are automatically transferred to the remaining servers from the particular server, in response to initiating the client request. Thereafter, the client request which seeks to update the particular network service state is processed in a tentative mode at the particular server without waiting for the executable order to be executed through to completion among the remaining servers.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products