Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2933 results about "Body type" patented technology

Virtual intelligence shoe with a podiatric analysis system

The virtual intelligence shoe with a podiatric analysis system provided with a portable pair of shoe-like body types thereof, into two of which a miniature electronic module and an enclosed sensor mat are permanently embedded in the shoe-like with a mechanical air package enclosing the electronic module to serve as a shock absorption. A miniature electronic module comprises a transmitting circuit with pressure resistance, shoe temperature and warning buzzer for full memory capacity, which receives the variable pressure and temperature voltage signals, convert them into resistance (ohm) and Celsius, respectively. The electrical signals can be emitted in an infrared light signal. An enclosed sensor mat constitutes a thin, flexible, planar, resilient, and dielectric material that arrays seventy-four positions at strategic geometrical pattern to produce the precision of collecting data exerted by a foot or feet continuously and instantaneously in static and dynamic event during the full weight bearing in various activities. The conjunction of a pair of shoe-like body types, a digital foot scanner, a portable infrared light-receiving unit and a central integrator (servers) form a podiatric analysis system for enabling accurate information. An obtained information of each individual can be stored and analyzed for diagnostic means with respect to the foot or feet maladies. The virtual intelligence shoe with a podiatric analysis system is an unconventional, which can ultimately be used by anyone and capable to produce consistent foot or feet information to implement the changes in the foot or feet biomechanics by altering the shoes, orthoses or other modes. In a preferred form, a pair of shoe-like body types is virtually applied to any type of foot or feet maladies and worn daily as if they were conventional shoes under various terrain conditions.
Owner:TRUONG VINNCENTE HOA GIA

Optical techniques for the measurement of chest compression depth and other parameters during cpr

Embodiments of the present invention are related to a method and device for the determination and calculation of the depth of chest compressions during the administration of cardiopulmonary resuscitation (CPR). Embodiments use an optical sensor to monitor the distance that a victim's chest is displaced during each compression throughout the administration of CPR. The optical sensor is most commonly an image sensor such as a CMOS or CCD sensor, and more specifically a CMOS image sensor capable of three-dimensional imaging based on the time-of-flight principle. An infrared emitter may illuminate the victim's body and any visible piece of ground beside the victim. As the infrared light interacts with any surfaces it encounters, it is reflected and returns to the image sensor where the time of flight of the infrared light is calculated for every pixel in the image sensor. The distance data is used to gauge the effective displacement of the victim's chest. The optical sensors can be used to visualize the size of a patient and immediately gauge the body type and instruct the user accordingly. Furthermore, optical measurement techniques can be used to accurately measure chest rise during artificial respiration and ensure that proper ventilation is being administered in between compressions. In addition, optical measurements of the chest of the victim and the hands of the rescuer can be used to help ensure that the rescuer has positioned his or her hands in the anatomically correct location for effective CPR.
Owner:STRYKER CANADA ULC

Urban multi-disaster risk loss evaluation system based on open source system framework and building spatial database and method thereof

The invention provides an urban multi-disaster risk loss evaluation system based on an open source system framework and a building spatial database. The urban multi-disaster risk loss evaluation system comprises an 1a) MAEviz open source framework development platform based on an Eclipse RCP frame, wherein the MAEviz open source framework development platform is used for extending a flood, wind damage and tsunami disaster loss evaluation module so as to realize multi-disaster urban risk loss evaluation; a 1b) disaster information module which is used for analysis of the risk and the dangerousness of flood, typhoon, earthquake and other natural disasters and evaluation of regional disaster-causing possibility; a 1c) spatial geographic information module which provides a common GIS function so as to realize construction of a localized urban disaster-affected body geographic information system property database; an 1d) urban disaster-affected body type classification and vulnerability analysis module which is used for establishing a building vulnerability module base of typical building structures under different disasters; and a 1e) disaster loss evaluation module which is used for damage prediction of disaster-affected body structures and damage loss evaluation of the disaster-affected bodies.
Owner:ZHEJIANG UNIV CITY COLLEGE

Three-dimensional fiber-based aerogel catalyst carrier and preparation method thereof

The invention relates to a preparation method of a three-dimensional fiber-based aerogel catalyst carrier and a product thereof. The preparation method comprises the following steps of: firstly dispersing fibers in solvents to form turbid liquid; secondly curing the turbid liquid to form cured pieces; thirdly removing cured solvents to form non-crosslinked fiber-based aerogel; finally carrying out crosslinking stabilization treatment and then carrying out activation treatment, thus obtaining the three-dimensional fiber-based aerogel catalyst carrier. The product is a three-dimensional network-shaped material formed through mutual penetration and stagger of fibers. The fiber crossing points are effectively interconnected through non-hydrogen-bond bonding. The three-dimensional fiber-based aerogel catalyst carrier has volume density of 0.1-500mg / cm<3>, average pore size of 0.01-2000mu m and specific surface area of 0.2-2000m<2> / g. The preparation method and the product have the advantages that the preparation process is simple; the raw material limitations are less; and the aerogel catalyst carrier product has good flexibility, connectivity and catalyst supporting capacity and has broad application prospects in the catalytic application field.
Owner:DONGHUA UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products