Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5036 results about "Lower limb" patented technology

In human anatomy, the lower leg is the part of the lower limb that lies between the knee and the ankle. The thigh is between the hip and knee and makes up the rest of the lower limb. The term lower limb or "lower extremity" is commonly used to describe all of the leg.

Apparatus for electrical stimulation of the body

A stimulator for stimulating the leg or other parts of the body e.g. the leg in a patient with drop foot is provided, the stimulator being controlled by e.g a foot switch but being reliable in use and therefore commanding acceptance by users. The foot switch has to work in adverse environmental conditions and is subject to repeated use so that its characteristics vary with time. The invention provides a functional electrical stimulator for attachment to the leg that has adaptive characteristics and comprises first and second electrodes for attachment to the leg to apply an electrical stimulus, a foot switch for sensing foot rise or foot strike, a circuit responsive to said foot switch for generating stimulation pulses; and means forming part of said circuit for responding to changes in the resistance characteristics of said switch means by adjusting a corresponding response threshold of said circuit.The invention also provides a two-channel stimulator that offers various possibilities for controlling the signals to be supplied to different muscle groups. For example, means may be provided defining a signal pathway between the first and second channels so that the supply of stimulation pulses in one of said first and second channels can be controlled by the state of switch means associated with the other of said first and second channels. In a further embodiment means defining a signal pathway between the first and second channels is arranged so that the supply of stimulation pulses in one of said first and second channels can be controlled by the state of activity of the other of said first and second channels. In a yet further embodiment the first channel has means arranged to cause the stimulation pulses to time-out after a predetermined period and the second channel having no or disabled timing means so that supply of stimulation pulses is continuous in a predetermined state of limb position responsive switch means associated with that channel. The two-channel stimulator can be used e.g., to treat bilateral dropped foot.
Owner:BOURNEMOUTH UNIV HIGHER EDUCATION CORP +1

Semi-powered lower extremity exoskeleton

The lower extremity exoskeleton comprises two leg supports connectable to person's lower limbs and configured to rest on the ground during their stance phase. Each leg support comprises a thigh link and a shank link; a knee joint configured to allow flexion and extension between the shank link and the thigh link. The lower extremity exoskeleton further comprises an exoskeleton trunk connectable to the person'supper body. The exoskeleton trunk is connectable to the thigh links of the leg supports allowing for the flexion and extension between the leg supports and the exoskeleton trunk. Two torque generators are coupled to each of the knee joints. A power unit, capable of providing power, is coupled to the torque generators. In operation when a leg support is in a stance phase and climbing a slope or stairs, the power unit injects power into the respective torque generator thereby extending the respective knee angle. When a leg support is in stance phase and not climbing a slope or stairs, the power unit does not inject any power to the respective torque generator, but without dissipating any stored power in said power unit, it forces the torque generator to resist flexion of the respective knee joint. When a leg support is in a swing phase, the power unit does not inject any power to the respective torque generator, but without dissipating any stored power in said power unit, it forces the torque generator to minimize its resistance to knee flexion and extension.
Owner:RGT UNIV OF CALIFORNIA

Motion control method of lower limb rehabilitative robot

The invention relates to a motion control method of a lower limb rehabilitative robot. In the method, aiming at different rehabilitation stages of a patient, two working modes of passive training and active training are carried out: under the mode of passive training, the patient is driven by controlling the robot to finish specific motions or motion according to a right physiological gait track; abnormal motions of the patient are completely restrained; and the patient passively follows the robot to do walking rehabilitation training; under the mode of active training, limited abnormal motions of the patient are restrained by the robot; through a real-time detection on joint driving forces generated when the patient acts on the robot in the motion process, human-computer interaction moment is extracted by utilizing an inverse dynamic model to judge the active motion intention of lower limbs of the patient; and the interaction moment is converted into correction value of gait track by utilizing an impedance controller to directly correct or generate the gait training track the patient expects through an adaptive controller, therefore, the purpose that the robot can provide auxiliary force and resistant force for the rehabilitation training can be indirectly realized. By means of the motion control method of the lower limb rehabilitative robot, rehabilitation training motions suitable for different rehabilitation stages can be provided for a dysbasia patient, thereby enhancing active participation degree of the rehabilitation training of the patient, building confidence of the rehabilitation and positivity of the motion, and then enhancing effect of the rehabilitation training.
Owner:SHANGHAI UNIV

Semi-powered lower extremity exoskeleton

The lower extremity exoskeleton comprises two leg supports connectable to person's lower limbs and configured to rest on the ground during their stance phase. Each leg support comprises a thigh link and a shank link; a knee joint configured to allow flexion and extension between the shank link and the thigh link. The lower extremity exoskeleton further comprises an exoskeleton trunk connectable to the person'supper body. The exoskeleton trunk is connectable to the thigh links of the leg supports allowing for the flexion and extension between the leg supports and the exoskeleton trunk. Two torque generators are coupled to each of the knee joints. A power unit, capable of providing power, is coupled to the torque generators. In operation when a leg support is in a stance phase and climbing a slope or stairs, the power unit injects power into the respective torque generator thereby extending the respective knee angle. When a leg support is in stance phase and not climbing a slope or stairs, the power unit does not inject any power to the respective torque generator, but without dissipating any stored power in said power unit, it forces the torque generator to resist flexion of the respective knee joint. When a leg support is in a swing phase, the power unit does not inject any power to the respective torque generator, but without dissipating any stored power in said power unit, it forces the torque generator to minimize its resistance to knee flexion and extension.
Owner:RGT UNIV OF CALIFORNIA

Wearable lower limb exoskeleton device

The invention discloses a wearable lower limb exoskeleton device, which comprises a waist supporting frame, a waist object carrier, an adjustable hip mechanism, a connecting rod adjustable knee joint mechanism, a connecting rod adjustable ankle joint mechanism, pressure detection shoes, a leg connecting rod, a constraint part and various connecting pieces. Both lower limbs have twelve rotational freedoms, the single lower limb has six degrees of freedom respectively, a hip has two degrees of freedom which finish bending and stretching as well as adduction and abduction movements of a hip joint, two joint axes always intersects at the center of the hip joint of a human body through the adjustment of the hip mechanism, and a knee joint has one degree of freedom which is coaxial with the knee joint of the human body and corresponds to the bending and stretching movement of the knee joint of the human body; and an ankle joint has three degrees of freedom. The device has good consistency of the movement of the hip joint and the movement of the human body during the walking of people; human-machine knee joints have small coaxality and position deviation; and the ankle joint has a compact structure. The device can be used for strengthening the abilities of walking with load and walking for a long time of wearers and detecting walking information of the wearers, and can also be used for helping people with slight obstacle of lower limb movement to normally walk and gradually rehabilitate.
Owner:BEIJING UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products