Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

759 results about "Stereoscopic video" patented technology

Stereoscopic video recording method, stereoscopic video recording medium, stereoscopic video reproducing method, stereoscopic video recording apparatus, and stereoscopic video reproducing apparatus

An object of the present invention is to provide a stereoscopic video recording method, a stereoscopic video recording medium, a stereoscopic video reproducing method, a stereoscopic video recording apparatus, and a stereoscopic video reproducing apparatus that are capable of more optimally performing recording and reproduction of stereoscopic video. According to one solving means of the present invention, a stereoscopic video recording method records, in a recording medium, stereoscopic video including left-eye images (2) and right-eye images (1) utilizing parallax information, by using a stereoscopic video recording apparatus (6). From video content that contains stereoscopic images, the method grasps the amount of variation in parallactic angle having a given or larger value, a variation time that the variation in parallactic angle takes, and the number of times that the variation in parallactic angle occurs. The method then calculates an evaluation value that corresponds to the degree of eye fatigue on the basis of the amount of variation, the variation time, and the number of times of the variation, encodes the video content in such a manner that the evaluation value is within a given range, and records the encoded video content in the recording medium.
Owner:MITSUBISHI ELECTRIC CORP

Method for coding two-directional predictive video object planes and decoding device

Temporal and spatial scaling of video images including video object planes (VOPs) (117, 118, 119, 405, 415, 420, 430, 520, 522, 524, 526, 532, 542, 705, 730, 750, 760, 780, 790, 805, 815, 820, 830, 850, 860, 880, 890) in an input digital video sequence is provided. Coding efficiency is improved by adaptively compressing scaled field mode video. Upsampled VOPs (450, 490, 522, 542, 750, 790) in the enhancement layer are reordered to provide a greater correlation with the input video sequence based on a linear criteria. The resulting residue is coded using a spatial transformation such as the DCT. A motion compensation scheme is used for coding enhancement layer VOPs (450, 460, 480, 490, 522, 524, 526, 542, 750, 760, 780, 790, 850, 860, 880, 890) by scaling motion vectors which have already been determined for the base layer VOPs (405, 415, 420, 430, 520, 532, 705, 730, 805, 815, 820, 830). A reduced search area whose center is defined by the scaled motion vectors is provided. The motion compensation scheme is suitable for use with scaled frame mode or field mode video. Various processor configurations achieve particular scaleable coding results. Applications of scaleable coding include stereoscopic video, picture-in-picture, preview access channels, and ATM communications.
Owner:GOOGLE TECH HLDG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products