Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2010 results about "Arylene" patented technology

An arylene or arenediyl is a substituent of an organic compound that is derived from an aromatic hydrocarbon (arene) that has had a hydrogen atom removed from two ring carbon atoms, such as phenylene.

Charge-transporting material and organic electroluminescence device

A charge-transporting material contains a compound represented by the following formula (1) in an organic layer, in which the contents of specific halogen-containing compounds are 0.1% or less to the compound represented by formula (1). In formula (1), each of A1 and A2 independently represents N, —CH or —CR; R represents a substituent; L represents a single bond, an arylene group, a cycloalkylene group or an aromatic heterocyclic group; each of R1 to R5 independently represents a substituent; each of n1, n2 and n3 independently represents an integer of 0 to 4; each of n4 and n5 independently represents an integer of 0 to 5; and each of p and q independently represents an integer of 1 to 4.
Owner:UDC IRELAND

Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device

An object is to provide a novel heterocyclic compound which can be used for a light-emitting element, as a host material of a light-emitting layer in which a light-emitting substance is dispersed. Other objects are to provide a light-emitting element having low driving voltage, a light-emitting element having high current efficiency, and a light-emitting element having a long lifetime. Provided are a light-emitting element including a compound in which a dibenzo[f,h]quinoxaline ring and a hole-transport skeleton are bonded through an arylene group, and a light-emitting device, an electronic device, and a lighting device each using this light-emitting element. The heterocyclic compound represented by General Formula (G1) below is provided.
Owner:SEMICON ENERGY LAB CO LTD

Purine inhibitors of fructose 1,6-bisphosphatase

InactiveUS6284748B1Reduce riskFasting hyperglycemiaBiocideOrganic active ingredientsFructosePurine
Novel purine compounds of the following structure and their use as fructose-1,6-bisphosphatase inhibitors is described.whereinA is selected from the group consisting of -NR82, -NHSO2R3, -OR5, -SR5, halo, lower alkyl, -CON(R4)2, guanidino, amidino, -H, and perhaloalkyl;E is selected from the group consisting of -H, halo, lower alkylthio, lower perhaloalkyl, lower alkyl, lower alkenyl, lower alkynyl, lower alkoxy, -CN, and -NR72;X is selected from the group consisting of -alk-NR-, alkylene, alkenylene, alkynylene, arylene, heteroarylene, -alk-NR-alk-, -alk-O-alk-, -alk-S-alk-, -alk-S-, alicyclicene, heteroalicyclicene, 1,1-dihaloalkylene, -C(O)-alk-, -NR-C(O)-NR'-, -alk-NR-C(O)-, -alk-C(O)-NR-, -Ar-alk-, and -alk-Ar-, all optionally substituted, wherein each R and R' is independently selected from -H and lower alkyl, and wherein each "alk" and "Ar" is an independently selected alkylene or arylene, respectively;Y is selected from the group consisting of -H, alkyl, alkenyl, alkynyl, aryl, alicyclic, heteroalicyclic, aralkyl, aryloxyalkyl, alkoxyalkyl, -C(O)R3, -S(O)2R3, -C(O)-OR3, -CONHR3, -NR22, and -OR3, all except H are optionally substituted; andpharmaceutically acceptable prodrugs and salts thereof.
Owner:METABASIS THERAPEUTICS INC

Process for preparing branched aromatic polycarbonates

InactiveUS6437083B1OligomerPolycarbonate
A process for the production of a branched aromatic polycarbonate that includes adding a branching agent to a polycarbonate oligomer, and producing a branched aromatic polycarbonate having a melt index ratio greater than an aromatic polycarbonate produced from the polycarbonate oligomer without the addition of the branching agent. The branching agent has the formula (I):wherein A is a C1-20 polymethylene, C2-20 alkylene or alkylidene, C5-36 cycloalkylene or cycloalkylidene, C6-36 arylene or alkylarylene, or C3-36 arylalkylene, wherein G is a monovalent C6-C30 hydrocarbon having at least one hydroxyl group bonded directly to an aromatic or cycloaliphatic ring and y is an integer greater than 2, and wherein each G may be the same or different.
Owner:SABIC GLOBAL TECH BV

Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device and Lighting Device

Provided is a novel substance that can emit phosphorescence. Alternatively, provided is a novel substance with high emission efficiency. An organometallic complex in which a 4-arylpyrimidine derivative is a ligand and iridium is a central metal is provided. Specifically, an organometallic complex having a structure represented by a general formula (G1) is provided. In the general formula (G1), R1 represents a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, R2 represents any of hydrogen, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and a substituted or unsubstituted phenyl group, R3 represents hydrogen or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and Ar1 represents a substituted or unsubstituted arylene group having 6 to 10 carbon atoms.
Owner:SEMICON ENERGY LAB CO LTD

Poly(arylene ether)-containing thermoset composition, method for the preparation thereof, and articles derived therefrom

A thermosetting composition comprises a capped poly(arylene ether), an alkenyl aromatic monomer, and an acryloyl monomer. The composition provides good flow properties and fast curing rates. After curing, the composition exhibits good stiffness, toughness, heat resistance, and dielectric properties.
Owner:SABIC INNOVATIVE PLASTICS IP BV

Organic light emitting compound, organic light emitting device comprising the same, and method of manufacturing the organic light emitting device

Provided are an organic light emitting compound represented by Formula 1 below, an organic light emitting device comprising the same, and a method of manufacturing the organic light emitting device:where CY1 and CY2 are each independently a fused C6-C50 aromatic ring, Ar1 is a substituted or unsubstituted C6-C50 arylene group, Ar2, Ar3, Ar4, and Ar5 are each independently a substituted or unsubstituted C6-C50 aryl group, m and n are independently 0-3, and R1 and R2 are substituent groups. An organic light emitting device comprising the organic light emitting compound has low turn-on voltage, high efficiency, high color purity and high luminance.
Owner:SAMSUNG ELECTRONICS CO LTD

Aromatic polycarbonate composition

Blend (B) comprising:at least one aromatic polycarbonate (P1), andat least one polyarylene (P2), more than 50 wt. % of the recurring units thereof are optionally substituted arylene groups [recurring units (R2)], each of said recurring units (R2) being linked by each of its two ends to two other optionally substituted arylene groups via a direct C—C linkage, and said recurring units (R2) being a mix (M) consisting of:between 0 and 75 mole %, based on the total number of moles of recurring units (R2), of rigid rod-forming arylene units (R2a), optionally substituted by at least one monovalent substituting group, withbetween 25 and 100 mole %, based on the total number of moles of recurring units (R2), of kink-forming arylene units (R2b), optionally substituted by at least one monovalent substituting group.Article or part of an article comprising the blend (B).
Owner:SOLVAY ADVANCED POLYMERS LLC

Light-Emitting Device Material and Light-Emitting Device

The present invention is a light emitting device material characterized by containing an anthracene compound represented by the following general formula (1) or general formula (3), and the present invention allows a light emitting device having high luminous efficiency and excellent durability. (R1 to R10 are a hydrogen atom, alkyl group, cycloalkyl group, heterocyclic group or the like. At least one of the R1 to R10 is a substituent represented by the following general formula (2).) (R11 to R18 are a hydrogen atom, alkyl group and cycloalkyl group. X is an oxygen atom or sulfur atom, and Y is a single bond; arylene group or heteroarylene group. Any one of the R11 to R18 is used for linking with Y, and α is used for linking with the anthracene skeleton.) (R19 to R37 are a hydrogen atom, alkyl group, cycloalkyl group, heterocyclic group or the like. n is 1 or 2. A is a heteroarylene group or arylene group. Any one of the R19 to R27 and any one of the R28 to R37 are used for linking with A.)
Owner:IDEMITSU KOSAN CO LTD

Poly (arylene ether)-containing thermoset composition, method for the preparation thereof, and articles derived therefrom

InactiveUS20030096123A1Fast curingReduced curing rate oxygen sensitivitySynthetic resin layered productsSpecial tyresHeat resistanceEther
A thermosetting composition comprises a capped poly(arylene ether), an alkenyl aromatic monomer, and an alkoxylated acryloyl monomer. The composition provides good flow properties and fast curing rates. After curing, the composition exhibits good stiffness, toughness, and heat resistance.
Owner:SABIC GLOBAL TECH BV

Poly(arylene ether) composition and extruded articles derived therefrom

A poly(arylene ether) composition includes a hydrogenated block copolymer of an alkenyl aromatic compound and a conjugated diene, a flame retardant, and a poly(arylene ether)-polysiloxane block copolymer reaction product that itself includes a poly(arylene ether)-polysiloxane block copolymer. The composition is useful for forming extruded articles, including insulation for wire and cable. The poly(arylene ether)-polysiloxane block copolymer contributes improved flame retardancy and, in many cases, improved physical properties to the composition.
Owner:SHPP GLOBAL TECH BV

Active materials for photoelectric devices and devices that use the materials

A conjugated polymer has a repeated unit having the structure of formula (I)wherein A1, A2, R1 and R2 are independently selected from the group consisting of a proton, an alkyl group comprising up to 18 carbon atoms, an alkoxy group comprising up to 18 carbon atoms, cyano, nitro, aryls and substituted aryls, and wherein Ar is selected from the group consisting of ethenylene, ethynylene, monocyclic arylene, bicyclic arylene, polycyclic arylene, monocyclic heteroarylene, bicyclic heteroarylene, polycyclic heteroarylene, and one to five such groups one of fused or linked.
Owner:RGT UNIV OF CALIFORNIA

Organometallic Complex and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Same

An organometallic complex having a structure represented by the general formula (G1) is synthesized and applied to a light-emitting element.In the formula, R3 represents either an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkoxycarbonyl group having 1 to 5 carbon atoms; R2 and R3 each show either hydrogen or an alkyl group 1 to 4 carbon atoms; Ar represents an arylene group having 6 to 25 carbon atoms; M is a center metal selected from Group 9 element and Group 10 element.
Owner:SEMICON ENERGY LAB CO LTD

Flame retardant thermoplastic composition and articles comprising the same

A flame retardant thermoplastic composition comprises: a poly(arylene ether); an impact modifier; a polyolefin; a phosphoric acid salt selected from the group consisting of melamine phosphate, melamine pyrophosphate, melamine orthophosphate, diammonium phosphate, monoammonium phosphate, phosphoric acid amide, melamine polyphosphate, ammonium polyphosphate, polyphosphoric acid amide, and combinations of two or more of the foregoing; a metal hydroxide; and an organic phosphate wherein the amount of phosphoric acid salt by weight is greater than or equal to the amount of organic phosphate by weight. The flame retardant composition is may be used in the production of electrical wires.
Owner:SHPP GLOBAL TECH BV

Organic electroluminescence device

Materials for organic electroluminescence devices represented by following general formula [1]: wherein A represents a substituted or unsubstituted arylene group having 22 to 60 carbon atoms, X1 to X4 each independently represent a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, X1 and X2 may be bonded to each other, X3 and X4 may be bonded to each other, Y1 to Y4 each independently represent an organic group represented by general formula [2], a to d each represent an integer of 0 to 2 and, when the arylene group represented by A has 26 or less carbon atoms, a+b+c+d>0 and the arylene group does not contain two or more anthracene nucleus;general formula [2] being: wherein R1 to R4 each independently represent hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, cyano group or form a triple bond by a linkage of R1 and R2 or R3 and R4, Z represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms and n represents 0 or 1.
Owner:IDEMITSU KOSAN CO LTD

Method of preparing a poly(arylene ether), and a poly(arylene ether) prepared thereby

A method of preparing a poly(arylene ether) includes oxidatively polymerizing a monohydric phenol in solution, concentrating the solution by removing a portion of the solvent to form a concentrated solution having a cloud point, Tcloud, and combining the concentrated solution with an anti-solvent to precipitate the poly (arylene ether), wherein the concentrated solution has a temperature of at least about (Tcloud-10° C.) immediately before it is combined with the anti-solvent. The method reduces the formation of undesirably fine particles in the product poly(arylene ether).
Owner:SHPP GLOBAL TECH BV

Process for producing aromatic polycarbonate

An aromatic polycarbonate and an active-hydrogen compound are subjected to the transesterification reaction in the presence of a transesterification catalyst under a reduced pressure condition followed by reaction with a salicylic acid ester derivative expressed by the following chemical formula (1),{wherein X is methyl or ethyl, and Y is a carbonyl group or a divalent functional group expressed by the following formula (2),(where Z is an alkylene group having a carbon number of 1 to 30, an arylene group having a carbon number of 6 to 30 or an aralkylene group having a carbon number of 7 to 30)}.An aromatic polycarbonate having a high molecular weight can be produced by this process.
Owner:TEIJIN LTD

Organometallic complex and light-emitting element, light-emitting device and electronic device using the same

An organometallic complex having a structure represented by the general formula (G1) is synthesized and applied to a light-emitting element. In the formula, R1 represents either an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkoxycarbonyl group having 1 to 5 carbon atoms; R2 and R3 each show either hydrogen or an alkyl group 1 to 4 carbon atoms; Ar represents an arylene group having 6 to 25 carbon atoms; M is a center metal selected from Group 9 element and Group 10 element.
Owner:SEMICON ENERGY LAB CO LTD

Poly(arylene ether) composition and articles

A flexible thermoplastic composition comprises a poly(arylene ether), a first block copolymer, a second block copolymer and a flame retardant wherein the second block copolymer comprises a controlled distribution copolymer block. The flexible thermoplastic composition is useful in the manufacture of coated wires.
Owner:SHPP GLOBAL TECH BV

Carbazole Derivative, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using Carbazole Derivative

To provide a light-emitting element having high luminous efficiency and to provide a light-emitting device and an electronic device which consumes low power and is driven at low voltage, a carbazole derivative represented by the general formula (1) is provided. In the formula, α1, α2, α3, and α4 each represent an arylene group having less than or equal to 13 carbon atoms; Ar1 and Ar2 each represent an aryl group having less than or equal to 13 carbon atoms; R1 represents any of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, and a substituted or unsubstituted biphenyl group; and R2 represents any of an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, and a substituted or unsubstituted biphenyl group. In addition, l, m, and n are each independently 0 or 1.
Owner:SEMICON ENERGY LAB CO LTD

Organic electrolumescence device

Materials for organic electroluminescence devices are represented by following general formula [1]: general formula [1]wherein A represents a chrysene group X1 to X4 each independently represent a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, X1 and X2 may be bonded to each other, X3 and X4 may be bonded to each other, Y1 to Y4 each independently represent an organic group represented by general formula [2], a to d each represent an integer of 0 to 2 and, a+b+c+d≧0; general formula [2] being: general formula [2]wherein R1 to R4 each independently represent hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, cyano group or form a triple bond by a linkage of R1 and R2 or R3 and R4, Z represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms and n represents 0 or 1.
Owner:IDEMITSU KOSAN CO LTD

Radiation curable ink compositions suitable for ink-jet printing

A radiation curable ink composition comprising at least one initiator and at least one polyhedral oligomeric silsesquioxane (POSS) represented by the following empirical formula [R(SiO1.5)]n wherein n=4,6,8,10,12,14,16 and larger and each R is independently hydrogen, an inorganic group, an alkyl group, an alkylene group, an aryl group, an arylene group, or non-heterocyclic group-containing organo-functional derivatives of alkyl, alkylene, aryl or arylene groups; and a process for obtaining a colourless, monochrome or multicolour ink jet image comprising the steps of jetting one or more streams of ink droplets having the above-mentioned composition onto an ink-jet ink receiver material, and subjecting the obtained image to radiation curing.
Owner:AGFA NV

Poly(arylene ether)-polysiloxane composition and method

ActiveUS8669332B2EtherPhenol
A thermoplastic composition that includes a poly(arylene ether)-polysiloxane block copolymer is prepared by a method that includes oxidatively copolymerizing a monohydric phenol and a hydroxyaryl-terminated polysiloxane. The oxidative polymerization includes a monohydric phenol addition period characterized by a first temperature, a build period following the addition period and characterized by a second temperature greater than the first temperature, and a temperature ramp period between the addition period and the build period. During the temperature ramp period, the temperature is increased at an average rate of about 0.01 to about 0.35° C. per minute, which improves the efficiency with which the hydroxyaryl-terminated polysiloxane is incorporated into the poly(arylene ether)-polysiloxane block copolymer.
Owner:SHPP GLOBAL TECH BV

Top coat material and use thereof in lithography processes

A top coat material for applying on top of a photoresist material is disclosed. The top coat material includes a polymer, which includes at least one fluorosulfonamide monomer unit having one of the following two structures: wherein: M is a polymerizable backbone moiety; Z is a linking moiety selected from the group consisting of —C(O)O—, —C(O)—, —OC(O)—, and —O—C(O)—C(O)—O—; R1 is selected from the group consisting of an alkylene, an arylene, a semi- or perfluorinated alkylene, and a semi- or perfluorinated arylene; p and q are 0 or 1; R2 is selected from the group consisting of hydrogen, fluorine, an alkyl group of 1 to 6 carbons, and a semi- or perfluorinated alkyl group of 1 to 6 carbons; n is an integer from 1 to 6; and R3 is selected from the group consisting of hydrogen, an alkyl, an aryl, a semi- or perfluorinated alkyl, and a semi- or perfluorinated aryl. The top coat material may be used in lithography processes, wherein the top coat material is applied on a photoresist layer. The top coat material is preferably soluble in aqueous alkaline developer. The top coat material is also preferably insoluble in water, and is therefore particularly useful in immersion lithography techniques using water as the imaging medium.
Owner:IBM CORP

Esters of capsaicin for treating pain

The present invention relates to the formulations of ester derivatives of capsaicin and ester derivatives of myristoleic acid. These derivatives are capable of reverting to the active parent compound following enzymatic or chemical hydrolysis. These derivatives have a higher lipophilicity, lipid solubility and less irritation to the skin than the parent compound, and hence are better able to be incorporated into certain pharmaceutical formulations, including cream and ointment pharmaceutical formulations. The pharmaceutical compositions of the present invention contain a compound of following formula (Ia):R—CO-CAP   (Ia)wherein CAP refers to collectively the capsaicins represented in FIG. 1 and a compound of formula (Ib):MCO-O—R   (Ib)wherein MCO refers to myristoleic acid.In formulae Ia and Ib, R is selected from alkyl groups of up to about 18 carbon atoms and aryl groups of up to about 18 carbon atoms and alkylene group of up to about 18 carbon atoms and an arylene group of up to about 18 carbon atoms. The alkyl, aryl and alkylene groups may be substituted or un-substituted, branched or straight chains. In addition, R may contain heteroatoms and may be straight chained or branched.The pharmaceutical compositions containing compounds of formulae Ia and Ib are useful for pain management in mammals in vivo and have been contemplated to be used in the treatment of various pains in humans.
Owner:TRINITY LAB INC

Poly(arylene ether) compositions and methods of manufacture thereof

Dielectric compositions encompassing one or more poly(arylene ether) polymers are provided. The dielectric compositions have the repetitive structural unit: where n=0 to 1; m=0 to 1-n; and Y1, Y2, Ar1 and Ar2 are each a divalent arylene radical, Y1 and Y2 derived from biphenol compounds, Ar1 derived from difluoroarylethynes and Ar2 derived from difluoroaryl compounds. Where both Y1 and Y2 are derived from fluorene bisphenol, n=0.1 to 1. Such poly(arylene ether) polymers are employed with a variety of microelectronic devices, for example, integrated circuits and multichip modules.
Owner:ALLIEDSIGNAL INC

Aromatic Polycarbonate Composition

Blend (B) comprising: at least one aromatic polycarbonate (P1), and at least one polyarylene (P2), more than 50 wt. % of the recurring units thereof are optionally substituted arylene groups [recurring units (R2)], each of said recurring units (R2) being linked by each of its two ends to two other optionally substituted arylene groups via a direct C—C linkage, and said recurring units (R2) being a mix (M) consisting of: between 0 and 75 mole %, based on the total number of moles of recurring units (R2), of rigid rod-forming arylene units (R2a), optionally substituted by at least one monovalent substituting group, with between 25 and 100 mole %, based on the total number of moles of recurring units (R2), of kink-forming arylene units (R2b), optionally substituted by at least one monovalent substituting group. Article or part of an article comprising the blend (B).
Owner:SOLVAY ADVANCED POLYMERS LLC

Chlorine resistant desalination membranes based on directly sulfonated poly(Arylene Ether Sulfone) copolymers

The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST +1

Electrically conductive thermoset composition, method for the preparation thereof, and articles derived therefrom

A conductive thermosetting composition comprises a functionalized poly(arylene ether), an alkenyl aromatic monomer, an acryloyl monomer, and a conductive agent. After curing, the composition exhibits good stiffness, toughness, heat resistance, and conductivity, and it is useful in the fabrication of a variety of conductive components, including the bipolar plates of fuel cells.
Owner:SABIC GLOBAL TECH BV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products