Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

285 results about "Benzocyclobutene" patented technology

Benzocyclobutene (BCB) is a benzene ring fused to a cyclobutane ring. It has chemical formula C₈H₈. BCB is frequently used to create photosensitive polymers. BCB-based polymer dielectrics may be spun on or applied to various substrates for use in Micro Electro-Mechanical Systems (MEMS) and microelectronics processing. Applications include wafer bonding, optical interconnects, low-κ dielectrics, or even intracortical neural implants.

Wafer level MMCM (microwave multichip module) packaging structure using photosensitive BCB (benzocyclobutene) as dielectric layer and method

The invention relates to a wafer level MMCM (microwave multichip module) packaging structure using photosensitive BCB (benzocyclobutene) as a dielectric layer and a method. The packaging structure is characterized by 1) manufacturing metal ground (GND) shielding layers on a silicon substrate with cavities for embedding; 2) using the photosensitive BCB as the dielectric layers and forming an interconnected through hole structure on the BCB by utilizing photoetching and developing processes; and 3) forming a multi-layer interconnection packaging structure through alternate occurrence of metal layers and the dielectric layers. The method is characterized by eroding or etching the cavities for embedding on the silicon substrate, sputtering a metal seed layer and carrying out electroplating to form the GND, embedding MMIC (monolithic microwave integrated circuit) chips, using conductive adhesives to bond the chips and the substrate, coating the photosensitive BCB and carrying out photoetching and developing to form the interconnected through hole patterns and carrying out curing to realize multi-layer MMCM package. The thickness of the dielectric layers is 20-35mu m. Capacitors, resistors, inductors, power dividers and antenna passive devices can be integrated in the multi-layer interconnection structure or discrete components are integrated through surface mount technology, thus realizing the functionalization of the module.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Hybrid integrated laser based on BCB (benzocyclobutene) bonding process and manufacturing method thereof

The invention provides a hybrid integrated laser based on BCB (benzocyclobutene) bonding process and a manufacturing method thereof. The hybrid integrated laser comprises an SOI-based optical waveguide chip including a silicon substrate, a buried oxide layer and a silicon waveguide structure, a BCB coating layer, a III-V group laser epitaxial layer, a heat sink through hole and a polycrystalline silicon heat sink filled in the heat sink through hole, wherein the III-V group laser epitaxial layer is provided with a bottom contact layer, an active layer, a tunnel junction and a top contact layer; the heat sink through hole runs through the III-V group laser epitaxial layer, the BCB coating layer and the buried oxide layer, as well as a silicon nitride isolation layer combined with the he surface of the III-V group laser epitaxial layer and provided with electrode through holes and an electrode structure. The hybrid integrated laser based on BCB bonding process and the manufacturing method thereof realize the monolithic integration of the SOI-based optical waveguide chip and the III-V group laser epitaxial layer by adopting the BCB bonding process, and improve the performance of the laser by introducing the polycrystalline silicon heat sink structure. The hybrid integrated laser based on BCB bonding process can be used as a silicon substrate light source device and provides an on-chip light source for a silicon substrate light integrated chip.
Owner:南通新微研究院 +1

Nanowire based vertical circular grating transistor and preparation method thereof

The invention discloses a nanowire based vertical circular grating transistor and a preparation method thereof. According to the structure, a conducting channel material is an intrinsic or low doped nanowire perpendicular to a substrate; a low-resistance nanowire is connected above the intrinsic or low doped nanowire in a gapless manner; the intrinsic or low doped nanowire is surrounded by a source electrode, a gate medium and a gate electrode sequentially from bottom to top; the source electrode and the gate medium as well as the gate medium and the grate electrode are connected in the position of the side wall of the nanowire in a gapless manner; the low-resistance nanowire is surrounded by a drain electrode; and three isolation layers are arranged among the electrodes. The invention further provides the preparation method of the transistor. Both the source electrode and the gate electrode are obtained with the method that firstly, a metal film is plated and then metal above BCB (benzocyclobutene) is eroded by using BCB as a mask; and the low-resistance nanowire is obtained through heavy doping of the intrinsic or low doped nanowire or through metal alloy. According to the short-channel transistor structure and the preparation method, a device with a short channel can be prepared, the parasitic resistance and the parasitic capacitance can be effectively reduced, and the device performance is improved.
Owner:PEKING UNIV

Etch tank adopted in process of packaging and manufacturing TSV (Through Silicon Via) wafer and preparation process

The invention relates to an etch tank adopted in the process of packaging and manufacturing a TSV (Through Silicon Via) wafer and a preparation process. The etch tank is characterized in that the wall of the etch tank is vertical, the surface area of the etch tank is 1.2-1.3 times that of BCB (Benzocyclobutene) coated on photoetching, the depth of the vertical tank wall of the etch tank is slightly less than the thickness of the coated BCB, and the BCB is coated on a naked supporting wafer. The etch tank is made of the TSV wafer. The TSV packaging and manufacturing process comprises the following steps of: sputtering a metal layer on the naked supporting wafer, and then etching after coating a layer of BCB; etching the etch tank on the front face of the TSV wafer by using DRIE (Deep Reactive Ion Etching), and then etching a TSV array by using the DRIE, wherein the etch tank corresponds to the BCB photoetched on the supporting wafer; and bonding one face of the supporting wafer with the BCB and the front face of the TSV wafer after being aligned, and blocking the fused BCB in an extension process by using the etch tank. The structure has the function of controlling the bonding size of the BCB.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Carbon-based field effect transistor and preparation method thereof

The invention relates to a carbon-based field effect transistor and a preparation method thereof, and belongs to the technical field of nanoelectronics. The carbon-based field effect transistor comprises a semiconductor substrate, an insulating layer, a conductive channel, a source electrode, a drain electrode, a gate dielectric layer and a gate electrode, wherein the insulating layer is arranged on the semiconductor substrate, and the conductive channel is arranged on the insulating layer; the conductive channel is made of a carbon-based material, and the source electrode and the drain electrode are respectively arranged at the two ends of the conductive channel; the gate dielectric layer is covered on the source electrode, the drain electrode, and the conductive channel arranged between the source electrode and the drain electrode, and the gate electrode is positioned above the gate dielectric layer; and the gate dielectric layer comprises a benzocyclobutene organic dielectric layer. According to the carbon-based field effect transistor and the preparation method thereof, the problem that a high-dielectric-constant gate dielectric film directly grows on the conductive chanel formed by a carbon-based material in the atomic layer deposition method, and the benzocyclobuten provides an atomic layer deposition nucleation center without causing a significant decrease in the carrier mobility of the carbon-based material and causing the decline in the device performance.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products