Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3185 results about "Film making" patented technology

Dry etching method for oxide semiconductor film

Provided is a dry etching method for an oxide semiconductor film made of In—Ga—Zn—O, in which an etching gas containing a hydrocarbon is used in a dry etching process for the oxide semiconductor film made of In—Ga—Zn—O formed on a substrate.
Owner:CANON KK

Method for depositing a chlorine-free conformal sin film

Described are methods of making silicon nitride (SiN) materials on substrates. Improved SiN films made by the methods are also included. One aspect relates to depositing chlorine (Cl)-free conformal SiN films. In some embodiments, the SiN films are Cl-free and carbon (C)-free. Another aspect relates to methods of tuning the stress and / or wet etch rate of conformal SiN films. Another aspect relates to low-temperature methods of depositing high quality conformal SiN films. In some embodiments, the methods involve using trisilylamine (TSA) as a silicon-containing precursor.
Owner:NOVELLUS SYSTEMS

Pattern forming method using relacs process

A resist pattern is formed on a to-be-processed film. Ions are implanted in the upper surface of the resist pattern. After ion implantation, an organic film is formed to cover the resist pattern and heated. A crosslinked resin film made of the organic film which has crosslinked is formed on the sidewall of the resist pattern by developing the organic film after heating. After formation of the crosslinked resin film, the resist pattern is removed. The to-be-processed film is processed using the crosslinked resin film as a mask.
Owner:KK TOSHIBA

Spin-on carbon compositions for lithographic processing

The invention described herein is directed towards spin-on carbon materials comprising polyamic acid compositions and a crosslinker in a solvent system. The materials are useful in trilayer photolithography processes. Films made with the inventive compositions are not soluble in solvents commonly used in lithographic materials, such as, but not limited to PGME, PGMEA, and cyclohexanone. However, the films can be dissolved in developers commonly used in photolithography. In one embodiment, the films can be heated at high temperatures to improve the thermal stability for high temperature processing. Regardless of the embodiment, the material can be applied to a flat / planar or patterned surface. Advantageously, the material exhibits a wiggling resistance during pattern transfer to silicon substrate using fluorocarbon etch.
Owner:BREWER SCI

Single-crystal silicon substrate, SOI substrate, semiconductor device, display device, and manufacturing method of semiconductor device

A semiconductor device of the present invention is arranged in such a manner that a MOS non-single-crystal silicon thin-film transistor including a non-single-crystal silicon thin film made of polycrystalline silicon, a MOS single-crystal silicon thin-film transistor including a single-crystal silicon thin film, and a metal wiring are provided on an insulating substrate. With this arrangement, (i) a semiconductor device in which a non-single-crystal silicon thin film and a single-crystal silicon thin-film device are formed and high-performance systems are integrated, (ii) a method of manufacturing the semiconductor device, and (iii) a single-crystal silicon substrate for forming the single-crystal silicon thin-film device of the semiconductor device are obtained.
Owner:SHARP KK

Semiconductor chip and manufacturing method for the same, and semiconductor device

The invention provides a semiconductor chip manufacturing method including the steps of: forming a concave portion extended in the thickness direction of a semiconductor substrate which has a front surface and a rear surface and has a function device formed on the front surface, from the front surface; forming an oxidation preventive film made of an inert first metal material by supplying the first metal material onto the inner wall surface of the concave portion; supplying a second metal material containing a metal which is oxidized more easily than the first metal material to the inside of the concave portion after the step of forming the oxidation preventive film; electrically connecting the second metal material supplied to the inside of the concave portion and the function device; and thinning the semiconductor substrate so that the thickness thereof becomes thinner than the depth of the concave portion by removing the semiconductor substrate from the rear surface while leaving the oxidation preventive film.
Owner:KIOXIA CORP +3

Fabrication Method of Semiconductor Integrated Circuit Device

The following defects are suppressed: when an interlayer insulating film including a silicon carbide film and an organic insulating film is dry-etched to form interconnection grooves over underlying Cu interconnections, an insulating reactant adheres to the surface of the underlying Cu interconnections exposed to the bottom of the interconnection grooves, or the silicon carbide film or the organic insulating film exposed to the side walls of the interconnection grooves are side-etched. When a lamination film made of a silicon oxide film, an organic insulating film, a silicon oxide film, an organic insulating film and a silicon carbide film is dry-etched to form interconnection grooves over Cu interconnections, a mixed gas of SF6 and NH3 is used as an etching gas for the silicon carbide film to work side walls of the interconnection grooves perpendicularly and further suppress defects that a deposit or a reactant adheres to the surface of the Cu interconnections exposed to the bottom of the interconnection grooves.
Owner:ENOMOTO HIROYUKI +2

Silicon-on-insulator (SOI) substrate and method of fabricating the same

There is provided a method of fabricating a silicon-on-insulator substrate, including the steps of (a) forming a silicon substrate at a surface thereof with an oxygen-containing region containing oxygen at such a concentration that oxygen is not precipitated in the oxygen-containing region in later mentioned heat treatment, (b) forming a silicon oxide film at a surface of the silicon substrate, (c) implanting hydrogen ions into the silicon substrate through the silicon oxide film, (d) overlapping the silicon substrate and a support substrate each other so that the silicon oxide film makes contact with the support substrate, and (e) applying heat treatment to the thus overlapped silicon substrate and support substrate to thereby separate the silicon substrate into two pieces at a region into which the hydrogen ions have been implanted, one of the two pieces remaining on the silicon oxide film as a silicon-on-insulator active layer. The support substrate, the silicon oxide film located on the support substrate, and the silicon-on-insulator active layer formed on the silicon oxide film defines a silicon-on-insulator structure. The method makes it possible to significantly reduce crystal defect density in the silicon-on-insulator active layer, which ensures that a substrate made in accordance with the method can be used for fabricating electronic devices thereon.
Owner:NEC CORP

Method for etching chromium thin film and method for producing photomask

An object to be processed has a chromium-based thin film made of a material containing chromium. The thin film is etched using a resist pattern as a mask. The thin film is etched by the use of a chemical species produced by preparing a dry etching gas containing a halogen-containing gas and an oxygen-containing gas and supplying a plasma excitation power to the dry etching gas to thereby excite plasma. The thin film is etched using, as the plasma excitation power, a power lower than a plasma excitation power at which plasma density jump occurs.
Owner:HOYA CORP

Organic electroluminescent display element, finder screen display device, finder and optical device

An organic electroluminescent display element has at least a positive electrode, an organic luminescent film, an electron injection layer and a negative electrode. Each of the positive and negative electrodes is formed of a transparent conductive film, the electron injection layer is formed of a thin transparent film made of a halogenide of an alkali metal or an alkaline earth metal, or an organic metal complex containing an alkali metal or an alkaline earth metal as a metal, and the organic metal complex is at least one complex selected from the group consisting of acetylacetonate complexes, alpha-nitroso-beta-naphthol complexes, salicylaldoxime complexes, cupferron complexes, benzoinoxime complexes, bipyridine complexes, phenanthroline complexes, crown complexes, proline complexes and benzoylacetone complexes.
Owner:KONICA MINOLTA INC

Method of etching sacrificial layer, method of manufacturing MEMS device, MEMS device and MEMS sensor

The method of etching a sacrificial layer according to the present invention includes the steps of forming a sacrificial layer having a protrusive shape on a base layer, forming a covering film covering the sacrificial layer, forming a protective film made of a material whose etching selection ratio to the sacrificial layer is greater than the etching selection ratio of the covering film to the sacrificial layer on a portion of the covering film opposed to the side surface of the sacrificial layer, and etching the sacrificial layer after the formation of the protective film.
Owner:ROHM CO LTD

Semiconductor device and a method of manufacturing the same

In a liquid crystal display device, an improved storage capacitance that uses a pair of transparent conductive films for electrodes is provided. On a flattening film made of a resin, a first transparent conductive film and an insulating film for capacitance are formed into a lamination to form in this laminated film an opening portion. An insulating film covering near the opening portion is formed. A transparent conductive film is formed and patterned to form a pixel electrode. Thus is formed a storage capacitance having the structure where the insulating film for capacitance is sandwiched between the first transparent conductive film and the pixel electrode.
Owner:SEMICON ENERGY LAB CO LTD +1

Semiconductor light emitting device capable of suppressing silver migration of reflection film made of silver

A luminous lamination structure includes a first layer made of n-type nitride semiconductor and a second layer made of p-type nitride semiconductor and disposed over the first layer wherein a luminous region is defined between the first and second layers. The second layer is removed to expose the first layer in a first area which is a partial surface of the first layer. A p-side electrode is disposed on a surface of the second layer and electrically connected to the second layer. An insulating film covers the p-side electrode. An n-side electrode electrically connected to the first layer is disposed in the first area. A reflection film disposed on the insulating film extends to the n-side electrode and electrically connected to the n-side electrode. The reflection film is made of silver containing alloy or silver.
Owner:STANLEY ELECTRIC CO LTD

Waterproof zipper, method and apparatus for manufacturing the same

A waterproof zipper, a method and an apparatus for manufacturing the same are provided, which can be provided with water resistance, implement diverse shapes and colors through a print layer formed on the zipper, and prevent the print layer from peeling off due to ultraviolet rays or a sliding operation of a slider. The waterproof zipper includes a zipper having one surface to which a plurality of elements are attached so that the elements are engaged with each other in a length direction of the zipper, and a waterproof film made of a transparent polyurethane material and having one surface on which a print layer is formed and which is attached to the other surface of the zipper.
Owner:UNIZIN

Method for manufacturing a field effect transistor having a field plate

An opening for forming a gate electrode is provided by a first photoresist pattern formed on an insulating film. Reactive ion etching by inductively coupled plasma is applied to the insulating film through the first photoresist pattern as a mask to thereby expose the surface of a GaN semiconductor layer, evaporating thereon a gate metal such as NiAu, thereby forming the gate electrode by self-aligned process. This prevents an oxidized film from being formed on the surface of the semiconductor layer. After the gate electrode is formed, a second photoresist pattern is formed to form a field plate on the gate electrode and the insulating film through the second photoresist pattern as a mask. Thereby, Ti having a high adhesiveness with an insulating film made of SiN or the like can be used as a field plate metal.
Owner:OKI ELECTRIC IND CO LTD

Gas barrier

InactiveUS20070135552A1Improved resistance to water vapor transmissionSmall sizeMaterial nanotechnologyPolymer scienceSealant
Nanoparticles of amorphous aluminum oxynitride or silicon oxynitride having a very high aspect ratio are used to fill polymeric materials to provide products that have an extremely low WVTR / OTR. Such products are particularly effective for incorporation into organic light-emitting devices or the like which are susceptible to degradation from moisture and / or oxygen. Pressure sensitive and / or thermosetting adhesives filled with such particles create excellent sealants. Polymeric sheets or films made from resin in which these nanoparticles are dispersed, or intimately associated with, before extrusion exhibit very low WVTR / OTR.
Owner:GENERAL ATOMICS

Method of cleaning film forming apparatus and film forming apparatus

To provide a method of cleaning a film forming apparatus capable of uniformly removing a deposit containing tantalum nitride, titanium nitride, tantalum, or titanium adhering to a wall of a processing chamber of the film forming apparatus at a high etching rate without use of plasma. A method of cleaning a film forming apparatus for removing a deposit containing tantalum nitride, titanium nitride, tantalum, or titanium deposited on a processing chamber of the film forming apparatus after it is used for forming a thin film made of tantalum nitride, titanium nitride, tantalum, or titanium, the cleaning method comprising: a step of supplying process gas containing fluorine gas into the processing chamber of the film forming apparatus; and a step of heating the processing chamber.
Owner:LAIR LIQUIDE SA POUR LETUDE & LEXPLOITATION DES PROCEDES GEORGES CLAUDE

Cellulose Ester Compositions Having Low Bifringence and Films Made Therefrom Comprising a Plasticizer

The present invention relates to cellulose esters having low hydroxyl content for use in optical applications, such as liquid crystal display (LCD) films. Films made with low hydroxyl levels and a given ratio of non-acetyl ester to hydroxyl level have been found to have low intrinsic birefringence. Therefore, these films can be cast, molded, or otherwise oriented without an appreciable birefringence or optical distortion (i.e. retardation). Such features make these films useful in polarizer, protective, and compensator films as well as molded optical parts, such as lenses. Furthermore, it has also been found that resins of the present invention can also be made to have “+C plate” behavior either by melt or solvent based processing, a characteristic which is not typical of cellulose esters. Such +C behavior allows films to be produced having unique compensatory behavior. Other embodiments of the invention relate to methods melt casting films while minimizing birefringence formation. Another embodiment of the invention is directed to films made from the cellulose esters described herein further comprising a plasticizer.
Owner:EASTMAN CHEM CO

Method for depositing a chlorine-free conformal sin film

Described are methods of making silicon nitride (SiN) materials on substrates. Improved SiN films made by the methods are also included. One aspect relates to depositing chlorine (Cl)-free conformal SiN films. In some embodiments, the SiN films are Cl-free and carbon (C)-free. Another aspect relates to methods of tuning the stress and / or wet etch rate of conformal SiN films. Another aspect relates to low-temperature methods of depositing high quality conformal SiN films. In some embodiments, the methods involve using trisilylamine (TSA) as a silicon-containing precursor.
Owner:NOVELLUS SYSTEMS

Semiconductor device and method for manufacturing the same

A resistor element formed of a peel-preventive film, a recording layer made of chalcogenide, and an upper electrode film is formed on a semiconductor substrate, first and second insulation films are formed so as to cover the resistor element, a via hole for exposing the upper electrode film is formed through the first and second insulation films, and a plug for electrical connection to the upper electrode film is formed in the via hole. To form the via hole, the first insulation film made of silicon nitride is used as an etching stopper to perform dry etching on the second insulation film. Then, dry etching is performed on the first insulation film to expose the upper electrode film from the via hole.
Owner:RENESAS TECH CORP

Vehicle mirror and manufacturing method therefor

The present invention provides a vehicle mirror and a manufacturing method therefor which allow the rear face side of a mirror element to be dark-colored without using a color plate or color coating. A mirror element is configured by forming a semitransparent reflective film made of a dielectric multilayer film on the front face of a flat transparent substrate. A dark-colored self-adhesive film is attached to the rear face of the mirror element. The dark-colored self-adhesive film is configured by forming an adhesive layer on the rear face of a dark-colored film layer by means of application. Grid-like air release channels are formed at fine pitches with minimal depth on an entire surface of the adhesive layer. After the dark-colored self-adhesive film is attached to the rear face of the mirror element, the grid-like air release channels visible from a front side of the mirror element are eliminated by heating and / or pressurizing.
Owner:MURAKAMI CORP

Liquid crystal device and electronic apparatus

A liquid crystal device in which a reflective display region for performing reflective display and a transmissive display region for performing transmissive display are provided in one dot region, includes a first substrate and a second substrate disposed so as to be opposite to each other with a liquid crystal layer interposed therebetween; a first electrode and a second electrode provided on a surface of the first substrate which faces the liquid crystal layer, each of the first and second electrodes applying an in-plane electric field to the liquid crystal layer in the one dot region, and a reflective portion dielectric film provided on the first electrode and / or the second electrode in the reflective display region, the reflective portion dielectric film making a capacitance between the first and second electrodes in the reflective display region smaller than a capacitance between the first and second electrodes in the transmissive display region.
Owner:JAPAN DISPLAY WEST

Oxide semiconductor device and method of manufacturing the same and active matrix substrate

A phenomenon of change of a contact resistance between an oxide semiconductor and a metal depending on an oxygen content ratio in introduced gas upon depositing an oxide semiconductor film made of indium gallium zinc oxide, zinc tin oxide, or others in an oxide semiconductor thin-film transistor. A contact layer is formed with an oxygen content ratio of 10% or higher in a region from a surface, where the metal and the oxide semiconductor are contacted, down to at least 3 nm deep in depth direction, and a region to be a main channel layer is further formed with an oxygen content ratio of 10% or lower, so that a multilayered structure is formed, and both of ohmic characteristics to the electrode metal and reliability such as the suppression of threshold potential shift are achieved.
Owner:HITACHI LTD

Method for manufacturing resonator

A method for manufacturing a resonator of the present invention includes the steps of (a) forming a resonator film including a piezoelectric film made of piezoelectric material and (b) preparing a resonator substrate for supporting the resonator film. The method further comprises the step of (c) bonding the resonator film formed in the step (a) and the resonator substrate prepared in the step (b).
Owner:PANASONIC CORP

Method for producing a group III nitride compound semiconductor substrate

The present invention provides a method for producing a group III nitride compound semiconductor substrate including: (a) forming a first semiconductor film over a substrate, the first semiconductor film made of a first group III nitride compound semiconductor and provided with a step; (b) forming a second semiconductor film made of a second group III nitride compound semiconductor having a different thermal expansion coefficient from that of the first group III nitride compound semiconductor on the first semiconductor film; and (c) cooling the substrate and separating the second semiconductor film from the first semiconductor film. Thus, a large-area group III nitride compound semiconductor substrate can be produced in high yields and with high reproducibility.
Owner:PANASONIC CORP

Purification of metal nanostructures for improved haze in transparent conductors made from the same

Provided are a method of isolating and purifying metal nanowires from a crude and complex reaction mixture that includes relatively high aspect ratio nanostructures as well as nanostructures of low aspect ratio shapes, and conductive films made of the purified nanostructures.
Owner:CHAMP GREAT INTL

Semiconductor light emitting device capable of suppressing silver migration of reflection film made of silver

A luminous lamination structure includes a first layer made of n-type nitride semiconductor and a second layer made of p-type nitride semiconductor and disposed over the first layer wherein a luminous region is defined between the first and second layers. The second layer is removed to expose the first layer in a first area which is a partial surface of the first layer. A p-side electrode is disposed on a surface of the second layer and electrically connected to the second layer. An insulating film covers the p-side electrode. An n-side electrode electrically connected to the first layer is disposed in the first area. A reflection film disposed on the insulating film extends to the n-side electrode and electrically connected to the n-side electrode. The reflection film is made of silver containing alloy or silver.
Owner:STANLEY ELECTRIC CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products