Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

362 results about "Plasma density" patented technology

Density of Blood. The density of blood plasma is approximately 1025 kg/m 3 and the density of blood cells circulating in the blood is approximately 1125 kg/m 3. Blood plasma and its contents is known as whole blood. The average density of whole blood for a human is about 1060 kg/M 3.

Controlled method for segmented electrode apparatus and method for plasma processing

An electrode assembly (50) and an associated plasma reactor system (10) and related methods for a variety of plasma processing applications. The electrode assembly provides control of a plasma density profile (202) within an interior region (30) of a plasma reactor chamber (20). The electrode assembly includes an upper electrode (54) having a lower surface (54L), an upper surface (54U) and an outer edge (54E). The lower surface of the upper electrode faces interior region of the plasma chamber housing the plasma (200), and thus interfaces with the plasma. The electrode assembly further includes a segmented electrode (60) arranged proximate to and preferably substantially parallel with the upper surface of the upper electrode. The segmented electrode comprises two or more separated electrode segments (62a, 62b, . . . 62n), each having an upper and lower surface. Each electrode segment is spaced apart from the upper electrode upper surface by a corresponding controlled gap (Ga, Gb, . . . Gn). The electrode assembly may further include one or more actuators (110) attached to one or more electrode segments at the upper surface of the one or more electrode segments. The actuators allow for movement of the one or more electrode segments to adjust one or more of the controlled gaps. The adjustable controlled gaps allow for controlling the shape of the plasma density profile within the interior region of the chamber, thereby allowing for a desired plasma process result.
Owner:TOKYO ELECTRON LTD

Plasma Processing Apparatus and Plasma Processing Method

The invention provides a plasma processing apparatus comprising a means for detecting the apparatus condition related to the ion flux quantity of plasma (plasma density) and the distribution thereof for to stabilizing mass production and minimizing apparatus differences. The plasma processing apparatus comprises a vacuum reactor 108, a gas supply means 111, a pressure control means, a plasma source power supply 101, a lower electrode 113 on which an object to be processes 112 is placed within the vacuum reactor, and a high frequency bias power supply 117, further comprising a probe high frequency oscillation means 103 for supplying an oscillation frequency that differs from the plasma source power supply 101 and the high frequency bias power supply 117 into the plasma processing chamber, high frequency receivers 114 through 116 for receiving the high frequency supplied from the probe high frequency oscillation means 603 via a surface coming into contact with plasma, and a high frequency analysis means 110 for measuring the impedance per oscillation frequency within an electric circuit formed by the probe high frequency oscillation means 603 and the receivers 114 through 116, the reflectance and the transmittance, and the variation of harmonic components.
Owner:HITACHI HIGH-TECH CORP

Integrated electrostatic inductive coupling for plasma processing

An integrated electrostatic inductively-coupled (i-ESIC) device is provided for plasma processing that may be used as a primary or secondary source for generating a plasma to prepare substrates for, and to process substrates by applying, dielectric and conductive coatings. The i-ESIC device is practical for processing advanced semiconductor devices and integrated circuits that require uniform and dense plasma. The invention may be embodied in an apparatus that contains a substrate support, typically including an electrostatic chuck, that controls ion energy by capacitively coupling RF power to the plasma and generating voltage bias on the wafer relative to the plasma potential. An integrated inductive coupling element is provided at the perimeter of the substrate support that increases plasma density at the perimeter of the wafer, compensating for the radial loss of charged particles toward chamber walls, to produce uniform plasma density above the processed wafer. An annular slotted shield protects the inductive coupling element from the plasma and provides conditions for effective inductive coupling of RF power into the plasma, such as eliminating capacitive coupling from the element to the plasma and unwanted sputtering of the element. The i-ESIC device has a capacitive coupling zone in its center where wafers are placed and an inductive coupling zone at the perimeter of the wafer coupled to a matching network and RF generator. Both zones together with plasma create a resonant circuit.
Owner:TOKYO ELECTRON LTD

Decaborane ion source

An ion source (50) for an ion implanter is provided, comprising a remotely located vaporizer (51) and an ionizer (53) connected to the vaporizer by a feed tube (62). The vaporizer comprises a sublimator (52) for receiving a solid source material such as decaborane and sublimating (vaporizing) the decaborane. A heating mechanism is provided for heating the sublimator, and the feed tube connecting the sublimator to the ionizer, to maintain a suitable temperature for the vaporized decaborane. The ionizer (53) comprises a body (96) having an inlet (119) for receiving the vaporized decaborane; an ionization chamber (108) in which the vaporized decaborane may be ionized by an energy-emitting element (110) to create a plasma; and an exit aperture (126) for extracting an ion beam comprised of the plasma. A cooling mechanism (100, 104) is provided for lowering the temperature of walls (128) of the ionization chamber (108) (e.g., to below 350° C.) during ionization of the vaporized decaborane to prevent dissociation of vaporized decaborane molecules into atomic boron ions. In addition, the energy-emitting element is operated at a sufficiently low power level to minimize plasma density within the ionization chamber (108) to prevent additional dissociation of the vaporized decaborane molecules by the plasma itself.
Owner:AXCELIS TECHNOLOGIES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products