Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

653results about "Hydrocarbon from halogen organic compounds" patented technology

Bromomethane prepared by bromine oxidation of methane and catalyst for conversing the bromomethane into hydrocarbon

The invention discloses a catalyst which is used when methane is transformed into hydrobromic ether through the bromine oxidation reaction, and the catalyst which is used when preparing heavy hydrocarbons by using the hydrobromic ether further, and belongs to the technology field of the catalyst and the preparation method thereof. The first type of catalyst which is used when the methane is transformed into the hydrobromic ether through the bromine oxidation reaction comprises the preparation step that water-soluble metallic compound precursors such as Rh, Ru, Cu, Zn, Ag, Ce, V, W, Cd, Mo, Mn, Cr, La, etc. are mixed with a silica precursor, the mixture is processed through hydrolyzation, drying and roasting, and then the catalyst is obtained; the first type of catalyst can lead definite masses of reactant composed of the methane, HBr, H2O and oxygen sources (that is O2, air or oxygen-enriched air) to perform the catalytic bromine oxidation reaction, to generate target products such as CH3Br, CH2Br2, etc. The second type of catalyst, which is used when preparing the heavy hydrocarbons by using the hydrobromic ether further, includes the preparation step that molecular sieves such as HZSM-5, HY, H Beta, 3A, 4A, 5A, 13X, etc. load metallic compounds composed of Zn and Mg, so that the catalyst is obtained; the second type of catalyst can lead the methane bromination products composed of the CH3Br and the CH2Br2 to further react so as to generate the heavy hydrocarbons containing C3 to C13 and HBr, wherein, the HBr is used as a circular reaction medium.
Owner:MICROVAST POWER SYST CO LTD

Novel multifunctional materials for in-situ environmental remediation of chlorinated hydrocarbons

Effective in-situ injection technology for the remediation of dense nonaqueous phase liquids (DNAPLs) such as trichloroethylene (TCE) benefits from the use of decontamination agents that effectively migrate through the soil media, and react efficiently with both dissolved TCE and bulk TCE. A novel decontamination system contains highly uniform carbon microspheres preferably in the optimal size range for transport through the soil. The microspheres are preferably enveloped in a polyelectrolyte (such as carboxymethyl cellulose, CMC) to which preferably a bimetallic nanoparticle system of zerovalent iron and Pd is attached. The carbon serves as a strong adsorbent to TCE, while the bimetallic nanoparticles system provides the reactivity. The polyelectrolyte serves to stabilize the carbon microspheres in aqueous solution. The overall system resembles a colloidal micelle with a hydrophilic shell (the polyelectrolyte coating) and a hard hydrophobic core (carbon). In contact with bulk TCE, there is a sharp partitioning of the system to the TCE side of the interface due to the hydrophobicity of the core. These multifunctional systems appear to satisfy criteria related to remediation and are relatively inexpensive and made with potentially environmentally benign materials. An aerosol process is preferably used to produce zerovalent iron particles supported on carbon. A method of lubricating includes creating carbon microspheres produced from a monosaccharide or polysaccharide, the carbon microspheres having a diameter of 50 nm to 6 microns, coating the microspheres with a surface coating and using the carbon microspheres as a lubricant.
Owner:THE ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products