Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2717results about "Metallocenes" patented technology

Organometallic complex and organic light-emitting element using same

An organometallic complex and an organic light-emitting element containing the complex which has a very high efficiency, a high luminance, and durability. The organic light-emitting element has an anode, a cathode, and a layer including an organic compound sandwiched between the anode and cathode. The layer containing the organic compound includes at least one organometallic complex represented by General Formula [I] below.
Owner:CANON KK

Organic electroluminescent device

An organic electroluminescent device having a pair of electrodes and at least one organic layer interposed between the pair of electrodes, in which the at least one organic layer contains at least one compound represented by formula (I): wherein, Z1 and Z2 each independently represent a nitrogen-containing aromatic six-membered ring coordinated to the platinum through a nitrogen atom; Q1 represents a group of atoms necessary for forming, together with the —C—C—, a nitrogen-containing aromatic five-membered ring; L1 represents a single bond or a divalent linking group; and n is 0 or 1.
Owner:UDC IRELAND +1

Platinum complex and light emitting device

Provision of a novel platinum complex which is useful as a material for a light-emitting device of good light emission characteristic and light emission efficiency, and a novel light-emitting material that may be utilized in various fields. A platinum complex represented by the following general formula (1): (in which two rings of ring A, ring B, ring C, and ring D represent nitrogen-containing heterocyclic rings which may have a substituent and the remaining two rings of them represent aryl rings or hetero aryl rings which may have a substituent, the ring A and the ring B, the ring A and the ring C or / and the ring B and the rind D may form condensed rings. Two of X1, X2, X3, and X4 represent nitrogen atoms coordination bonded to a platinum atom and the remaining two of them represent carbon atoms or nitrogen atoms. Q1, Q2, and Q3 each represents a bond, oxygen atom, sulfur atom or bivalent group, two of Z1, Z2, Z3, and Z4 represent coordination bonds, and the remaining two of them represent covalent bonds, oxygen atoms or sulfur atoms), and a light-emitting device containing the platinum complex.
Owner:TAKASAGO INTERNATIONAL CORPORATION

Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device

As a novel substance having a novel skeleton, an organometallic complex with high emission efficiency which achieves improved color purity by a reduction of half width of an emission spectrum is provided. One embodiment of the present invention is an organometallic complex in which a β-diketone and a six-membered heteroaromatic ring including two or more nitrogen atoms inclusive of a nitrogen atom that is a coordinating atom are ligands. In General Formula (G1), X represents a substituted or unsubstituted six-membered heteroaromatic ring including two or more nitrogen atoms inclusive of a nitrogen atom that is a coordinating atom. Further, R1 to R4 each represent a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
Owner:SEMICON ENERGY LAB CO LTD

Atomic layer deposition using metal amidinates

Metal films are deposited with uniform thickness and excellent step coverage. Copper metal films were deposited on heated substrates by the reaction of alternating doses of copper(I) NN′-diisopropylacetamidinate vapor and hydrogen gas. Cobalt metal films were deposited on heated substrates by the reaction of alternating doses of cobalt(II) bis(N,N′-diisopropylacetamidinate) vapor and hydrogen gas. Nitrides and oxides of these metals can be formed by replacing the hydrogen with ammonia or water vapor, respectively. The films have very uniform thickness and excellent step coverage in narrow holes. Suitable applications include electrical interconnects in microelectronics and magnetoresistant layers in magnetic information storage devices.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Polymerization catalysts for producing high melt index polymers without the use of hydrogen

Various catalyst compositions including the contact product of at least one ansa-metallocene compound, at least one organoaluminum compound, and at least one activator-support are disclosed. Processes for forming such compositions and for forming polyolefins with such compositions are also disclosed. Metallocene compounds are also presented.
Owner:CHEVRON PHILLIPS CHEMICAL CO LP

Organometallic Complex, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Including the Organometallic Complex

An organometallic complex is provided by which favorable red-color light emission can be obtained. Further, an organometallic complex having a peak of light emission at about 620 nm is provided because the wavelength of light which is perceived as excellent red-color light is about 620 nm. Furthermore, an organometallic complex is provided by which red-color light emission with high luminous efficiency (cd / A) can be obtained. An organometallic complex represented by the following general formula (G2) and a light-emitting element, a light-emitting device, and an electronic device including the organometallic complex represented by the following general formula (G2) are provided.
Owner:SEMICON ENERGY LAB CO LTD

Novel organometallic compound, and organic light-emitting diode using same

The present invention relates to a novel organometallic compound, and more particularly, to a luminescent organometallic compound in which intermolecular interaction is inhibited by means of introducing a germanium substituent, thereby improving light-emitting characteristics. The present invention also relates to an organic electronic device, specifically, to an organic light-emitting diode using the compound. According to the present invention, a germanium substituent is introduced to the parent organometallic iridium compound, thus inhibiting an intermolecular interaction in the solid state and enabling the compound of the present invention to be effectively used in solution processing. When the compound of the present invention is used as part of a light-emitting layer of an organic light-emitting diode, the light-emitting efficiency of the light-emitting diode may be significantly improved. Therefore, the compound of the present invention may be effectively used as a material for an organic light-emitting diode.
Owner:SAMSUNG ELECTRONICS CO LTD

Aluminum-free monocyclopentadienyl metallocene catalysts for olefin polymerization

This invention relates to a catalyst system for the production of polyolefins comprising:(A) a Group IV B transition metal component represented by one of the two general formulaewherein(C5H5-y-xRx) is a cylopentadienyl ring(JR′z-l-y) is a heteroatom ligand in which J is an element with a coordination number of three from Group V-A or an element with a coordination number of two rom Group VI-A of the Periodic Table of Elements,each Q is independently, hydride, C1—C20 hydrocarbyl radicals, substituted hydrocarbyl radials wherein one or more hydrogen atoms is replaced by an electron withdrawing group, or C1—C20 hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the group consisting of germanium and silicon, provided that Q is not a substituted or unsubstituted cyclopentadienyl ring, or both Q together may be an alkylidene, olefin, acetylene or a cyclometallated hydrocarbyl;“y” is 0 or 1; when “y” is 1, T is a covalent bridging group containing a Group IV-A or V-A element;L is a neutral Lewis base; and “w” is a number from 0 to 3;(B) an activator compound comprising (1) a cation; and (2) a compatible noncoordinating anion.
Owner:EXXONMOBIL CHEM PAT INC

High melting thermoplastic elastomeric alpha-olefin polymers (PRE/EPE effect) and catalysts therefor

InactiveUS6559262B1Activity of fluxional unbridged metallocene polymerization catalystsHigh molecular weightGroup 4/14 element organic compoundsMetallocenesElastomerEthylene Homopolymers
This invention relates generally to low ethylene insertions into I-olefin polymers and processes for production of such polymers using unbridged fluxional metallocenes, primarily substituted aryl indenyl metallocenes, and more particularly to use of unbridged, fluxional, cyclopentadienyl or indenyl metallocene catalyst systems in methods of production of high melting point I-olefin homo- and co-polymers, particularly elastomeric crystalline and amorphous block homo- and co-polymers of I-olefins. The activity of fluxional unbridged metallocene polymerization catalysts containing at least one 2-arylindene ligand is increased 10x or more by the addition of small (typically 0.1-10 wt. %) amounts of ethylene to the polymerization system, which increase is termed the Polymerization Rate-Enhancement effect (PRE), which is measured in terms of an Ethylene Enhancement Factor (EEF) as a dimensionless ratio in the range of from about 1.1 to about 10 or above. The amount of ethylene included in the reaction system can be selected and controlled to be so small as to result in essentially minimal (<2 mole %) incorporation of ethylene units into the resulting elastomeric polymer and the molecular weight may be increased. Amounts of ethylene to generate the PRE effect may be greater than 0.1 wt. % and preferably range up to about 2 wt. %. However, if a polymer with more ethylene is desired, additional ethylene may be incorporated into the polymerization feed, including up to 10 to about 50 mole % based on olefin units. A second important aspect of this invention is the ability to use a PRE activity-enhancing amount of ethylene in an olefin polymerization without substantially affecting the physical properties of the elastomer. In a third important aspect of this invention, I-olefin elastomers are produced through incorporation of ethylene using unbridged fluxional catalyst systems which may not otherwise produce acceptable elastomeric homopolymers. This effect is termed the EPE effect, for Elastomeric Property-Enhancing effect. The EPE amount of ethylene required to produce such elastomers typically overlaps the PRE activity-enhancing amount. Incorporation of up to about 5 mole % or more of ethylene typically will produce an elastomeric polymer using such catalyst systems. Typical useful amounts of incorporated ethylene include about 1 to 3 mole %. Preferred polymers of this invention retain sufficient crystallinity to provide a high melting point (by DSC) of about 80° C., preferably above 100° C., including in the range of from about 120° C. to about 140° C. and above. Novel flexible alpha-olefin homo and copolymers having elongation in excess of 600% and substantially no retained force are disclosed.
Owner:BP CORP NORTH AMERICA INC

Volatile noble metal organometallic complexes

InactiveUS20050033075A1Reduce Van der Waals interactionBoiling and sublimation temperatureFurnaces without endless coreRuthenium organic compoundsIridiumIodide
A series of noble metal organometallic complexes of the general formula (I): MLaXb(FBC)c, wherein M is a noble metal such as iridium, ruthenium or osmium, and L is a neutral ligand such as carbonyl, alkene or diene; X is an anionic ligand such as chloride, bromide, iodide and trifluoroacetate group; and FBC is a fluorinated bidentate chelate ligand such as beta diketonate, beta-ketoiminate, amino-alcoholate and amino-alcoholate ligand, wherein a is an integer of from zero (0) to three (3), b is an integer of from zero (0) to one (1) and c is an 10 integer of from one (1) to three (3). The resulting noble metal complexes possess enhanced volatility and thermal stability characteristics, and are suitable for chemical vapor deposition(CVD) applications. The corresponding noble metal complex is formed by treatment of the FBC ligand with a less volatile metal halide. Also disclosed are CVD methods for using the noble metal complexes as source reagents for deposition of noble metal-containing films such as Ir, Ru and Os, or even metal oxide film materials IrO2, OsO2 and RuO2.
Owner:NATIONAL TSING HUA UNIVERSITY +1

Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage

An isoreticular metal-organic framework (IRMOF) and method for systematically forming the same. The method comprises the steps of dissolving at least one source of metal cations and at least one organic linking compound in a solvent to form a solution; and crystallizing the solution under predetermined conditions to form a predetermined IRMOF. At least one of functionality, dimension, pore size and free volume of the IRMOF is substantially determined by the organic linking compound.
Owner:RGT UNIV OF MICHIGAN

Metal coordination compound, luminescence device and display apparatus

An organic EL device includes a luminescence layer containing, as a luminescent material allowing a high-luminescence and high-efficiency luminescence for a long period of time, a metal coordination compound represented by the following formula (1): LmML'n, wherein M denotes Ir, Pt, Ph or Pd; L denotes a bidentate ligand; L' denotes a bidentate ligand different from L; m is an integer of 1, 2 or 3; and n is an integer of 0, 1 or 2 with the proviso that the sum of m and n is 2 or 3. The partial structure MLm is represented by a formula (2) or a formula (3) shown below, and the partial structure ML'n is represented by a formula (4) or a formula (5) shown below: wherein CyN1, CyN2 and CyN3 independently denote a substituted or unsubstituted cyclic group containing a nitrogen atom connected to M; CyN4 denotes a cyclic group containing 8-quinoline or its derivative having a nitrogen atom connected to M; CyC1, CyC2 and CyC3 independently denote a substituted or unsubstituted cyclic group containing a carbon atom connected to M, with the proviso that the metal coordination compound is represented by the formula (2) when n is 0.
Owner:CANON KK

Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device and Lighting Device

Provided is a novel substance that can emit phosphorescence. Alternatively, provided is a novel substance with high emission efficiency. An organometallic complex in which a 4-arylpyrimidine derivative is a ligand and iridium is a central metal is provided. Specifically, an organometallic complex having a structure represented by a general formula (G1) is provided. In the general formula (G1), R1 represents a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, R2 represents any of hydrogen, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and a substituted or unsubstituted phenyl group, R3 represents hydrogen or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and Ar1 represents a substituted or unsubstituted arylene group having 6 to 10 carbon atoms.
Owner:SEMICON ENERGY LAB CO LTD

Platinum complex and light-emitting device

A platinum complex represented by the general formula (1) below, useful as a phosphorescence emission material, a tetradentate ligand useful for synthesizing the platinum complex, and a light-emitting device containing at least one of the platinum complex.wherein ring B represents a nitrogen-containing aromatic heterocyclic ring; rings A, C and D each independently represent an aromatic or aromatic heterocyclic ring, while either of the rings C and D represents five-membered ring, the other represents a five- or six-membered ring; RA, RB, RC, and RD respectively represent substituents on the rings A, B, C, and D; two of XA, XB, XC, and XD represent a nitrogen atom that may be bound with the platinum atom by a coordinate bond, the others each independently represent a carbon atom or nitrogen atom that may be bound with the platinum atom by a covalent bond; Q represents a bivalent atom or atomic group bridging the rings B and C; and YC and YD each independently represent a carbon atom or nitrogen atom.
Owner:TAKASAGO INTERNATIONAL CORPORATION

Metal coordination compound, luminescence device and display apparatus

An electroluminescence device having a layer containing a specific metal coordination compound is provided. The metal coordination compound is represented by formula (1) below:MLmL'n (1),wherein M is a metal atom of Ir, Pt, Rh or Pd; L and L' are mutually different bidentate ligands; m is 1, 2 or 3 and n is 0, 1 or 2 with the proviso that m+n is 2 or 3; a partial structure MLm is represented by formula (2) shown below and a partial structure ML'n is represented by formula (3) or (4) shown below: The metal coordination compound of the formula (1) is characterized by having at least one aromatic substituent for at least one of CyN1, CyN2, CyC1 and CyC2. The metal coordination compound having the aromatic substituent is effective in providing high-efficiency luminescence, long-term high luminance, and less deterioration by current passing.
Owner:CANON KK

Blue phosphorescent compound and organic electroluminescent device using the same

Disclosed are a blue phosphorescent compound with a high color purity and a high efficiency, and an organic electroluminescent device using the same. The blue phosphorescent compound is represented by the following Formula:wherein R1 to R5 are each independently hydrogen (H), fluorine (F), chlorine (Cl), bromine (Br), a cyano group, a C1 to C6 alkyl group, a C1 to C6 alkoxy group, a C6 to C20 substituted or unsubstituted aromatic group, a C5 to C20 substituted or unsubstituted heterocyclic group, a C1 to C6 amine group, a C6 to C20 aromatic-substituted amine group, or a C5 to C20 heterocycle-substituted amine group, X is selected from nitrogen (N), oxygen (O), phosphorous (P) and sulfur (S) atoms, at least one of A1, A2, A3 and A4 is nitrogen (N), and the remaining are selected from hydrogen (H)-substituted carbon, and alkyl or alkoxy-substituted carbon, L is a monodentate or bidentate ligand and n is 1 to 3.
Owner:LG DISPLAY CO LTD

Novel dinuclear metal complex and pyrophosphate assay using the same

A novel coordination complex formed by dinuclear metal complexation is provided. The complex is a dinuclear metal complex of a compound, wherein the compound comprises a conjugation ring system substituted with: a) an electron donating group selected from —OH, —SH and —NH2; b) an indicating group selected from a chromogenic group, a fluorescent group and an electrochemical group; and c) two binding auxiliary groups, in combination with the electron donating group each of which being coordinated with the metal to provide an anion bonding site, wherein as the complex binds to a anion, the coordination of the electron donating group with the metal is weakened and electron donation of the electron donating group to the conjugation ring system is reinforced such that the reinforced electron donation by the electron donating group is transferred through the conjugation ring system to the indicating group to produce an indicating signal concomitant with the change of its electronic density. The coordination complex shows high sensitivity and high selectivity for pyrophosphate over other anions in an aqueous solvent over a wide pH range. Therefore, the complex is useful for pyrophosphate assay as a pyrophosphate sensor.
Owner:SEOUL NAT UNIV FOUND

Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage

The ability to design and construct solid-state materials with pre-determined structures is a grand challenge in chemistry. An inventive strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that has allowed the design of porous structures in which pore size and functionality can be varied systematically. MOF-5, a prototype of a new class of porous materials and one that is constructed from octahedral Zn—O—C clusters and benzene links, was used to demonstrate that its 3-D porous system can be functionalized with the organic groups, —Br, —NH2, —OC3H7, —OC5H11, —H4C2, and —H4C4, and its pore size expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. The ability to direct the formation of the octahedral clusters in the presence of a desired carboxylate link is an essential feature of this strategy, which resulted in the design of an isoreticular (having the same framework topology) series of sixteen well-defined materials whose crystals have open space representing up to 91.1% of the crystal volume, and homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. Unlike the unpredictable nature of zeolite and other molecular sieve syntheses, the deliberate control exercised at the molecular level in the design of these crystals is expected to have tremendous implications on materials properties and future technologies. Indeed, data indicate that members of this series represent the first monocrystalline mesoporous organic / inorganic frameworks, and exhibit the highest capacity for methane storage (155 cm3 / cm3 at 36 atm) and the lowest densities (0.41 to 0.21 g / cm3) attained to date for any crystalline material at room temperature.
Owner:RGT UNIV OF MICHIGAN

Volatile dihydropyrazinly and dihydropyrazine metal complexes

A composition comprising dihydropyrazinyl anions that can be coordinated as 6 electron ligands to a broad range of different metals to yield volatile metal complexes for ALD and CVD depositions are described herein. Also described herein are undeprotonated dihydropyrazines that can coordinate to metals as stabilizing neutral ligands. In one embodiment, the composition is used for the direct liquid injection delivery of the metal dihydropyrazinyl complex precursor to the chamber of an ALD or CVD chamber for the deposition of metal-containing thin films such as, for example, ruthenium or cobalt metal films.
Owner:VERSUM MATERIALS US LLC

Polymeric composites including dicyclopentadiene and related monomers

Compositions including fibers, fillers, reinforcing agents or other property-enhancing agents added to a polymeric matrix formed from DCPD monomer or related compounds such as norbornene and norbornadiene are disclosed. The composition has a mechanically forgiving matrix due to the polymer with the inherent strength and other physical properties of the enhancement agent according to the invention. Enhancement agents according to the invention generally include inorganic, organic and metallic substances in a variety of forms.
Owner:CYMETECH

Platinum complex and light-emitting device

A platinum complex represented by the general formula 1, useful as a phosphorescence emission material, a tetradentate ligand useful for synthesizing the platinum complex, and a light-emitting device containing at least one of the platinum complex. In the general formula 1, two of the rings A, B, C, and D each independently represent an aromatic ring or an aromatic heterocyclic ring, while the other two rings each represent a nitrogen-containing heterocyclic ring; RA-D represent the substituents; each the rings A and B, the rings B and C, and the rings C and D may be bound to each other to form a fused ring independently via the substituent RA-D; XA-D each represent a carbon atom or nitrogen atom; Q represents a bivalent atom or atomic group; Y represents a carbon or nitrogen atom; and n is an integer of 0 to 3.
Owner:TAKASAGO INTERNATIONAL CORPORATION

High-melting polyolefin copolymer elastomers, catalysts and methods of synthesis

This invention relates to high melting polyolefin copolymers suitable as thermoplastic elastomers and catalysts and methods for their synthesis. These elastomeric olefin copolymers are characterized by a mole fraction of crystallizable component Xc from about 30 to about 99%; low glass transition temperatures, below -20° C., and typically below -50° C.; melting points above about 90° C.; high molecular weights; a molecular weight distribution MW / Mn< / =10; and a narrow composition distribution between chains of < / =15%. The novel copolymers of the invention range from reactor blends to multiblock copolymers that can be sequentially fractionated into fractions of differing crystallinities, which fractions nevertheless show compositions of comonomers which differ by less than 15% from the parent polymer (reactor product). The invention also relates to a process for producing such copolymers by utilizing an unbridged, substituted or unsubstituted cyclopentadienyl metallocene catalyst that is capable of interconverting between states with different copolymerization characteristics, which interconversion is controlled by selecting the substituents of the cyclopentadienyl ligands so that the rate of interconversion of the two states is within several orders of magnitude of the rate of formation of a single polymer chain. Where ri>rf the polymer can be characterized as multiblock; where ri<rf, the result is a polymer blend and where ri / rf is close to 1, the resulting polymer is a mixture of blend and multiblock. The metallocene catalysts of the invention are able to interconvert between more than two states, with embodiments of four states being shown in FIG. 2.
Owner:BP AMOCO CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products