Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

132results about How to "Rapid heat treatment" patented technology

Tantalum amide precursors for deposition of tantalum nitride on a substrate

Tantalum and titanium source reagents are described, including tantalum amide and tantalum silicon nitride precursors for the deposition of tantalum nitride material on a substrate by processes such as chemical vapor deposition, assisted chemical vapor deposition, ion implantation, molecular beam epitaxy and rapid thermal processing. The precursors may be employed to form diffusion barrier layers on microlectronic device structures enabling the use of copper metallization and ferroelectric thin films in device construction.
Owner:ENTEGRIS INC

Tantalum amide precursors for deposition of tantalum nitride on a substrate

Tantalum and titanium source reagents are described, including tantalum amide and tantalum silicon nitride precursors for the deposition of tantalum nitride material on a substrate by processes such as chemical vapor deposition, assisted chemical vapor deposition, ion implantation, molecular beam epitaxy and rapid thermal processing. The precursors may be employed to form diffusion barrier layers on microelectronic device structures enabling the use of copper metallization and ferroelectric thin films in device construction.
Owner:ADVANCED TECH MATERIALS INC

Method for forming transistor of semiconductor device

A method for forming a transistor of a semiconductor device, including the step of forming channel layers of a first and a second conductive types, performing high temperature thermal process to form stabilized channel layers and forming an epitaxial channel structure having a super-steep-retrograde delta-doped layer by growing undoped silicon epitaxial layers, treating the entire surface of the resulting structure with hydrogen, forming an epitaxial channel structure by growing undoped silicon epitaxial layers on the stabilized channel layers, forming gate insulating films and gate electrodes on the epitaxial channel structures, re-oxidizing the gate insulating films for repairing damaged portions of the gate insulating films; and forming a source / drain region and performing a low temperature thermal process.
Owner:SK HYNIX INC

Method for forming transistor of semiconductor device

A method for forming a transistor of a semiconductor device, including the step of forming a channel layers of a first and a second conductive types, performing high temperature thermal process to form stabilized channel layers and forming an epitaxial channel structure having a super-steep-retrograde delta-doped layer by growing undoped silicon epitaxial layers, treating the entire surface of the resulting structure with hydrogen, forming an epitaxial channel structure by growing undoped silicon epitaxial layers on the stabilized channel layers, forming gate insulating films and gate electrodes on the epitaxial channel structures, re-oxidizing the gate insulating films for repairing damaged portions of the gate insulating films; and forming a source / drain region and performing a low temperature thermal process.
Owner:SK HYNIX INC

Modified thermal processing of heavy hydrocarbon feedstocks

The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. It utilizes a short residence-time pyrolytic reactor operating under conditions that result in a rapid pyrolytic distillation with coke formation. Both physical and chemical changes taking place lead to an overall molecular weight reduction in the liquid product and rejection of certain components with the byproduct coke. The liquid product is upgraded primarily because of its substantially reduced viscosity, increased API gravity, and the content of middle and light distillate fractions. While maximizing the overall liquid yield, the improvements in viscosity and API gravity can render the liquid product suitable for pipelining without the use of diluents. This invention particularly relates to reducing sulfur emissions during the combustion of byproduct coke (or coke and gas), to reducing the total acid number (TAN) of the liquid product, and to reducing the hydrogen sulfide content of one, or more than one component of the product stream. The method comprises introducing a particulate heat carrier into an up-flow reactor, introducing the feedstock at a location above the entry of the particulate heat carrier, allowing the heavy hydrocarbon feedstock to interact with the heat carrier for a short time, separating the vapors of the product stream from the particulate heat carrier and liquid and byproduct solid matter, regenerating the particulate heat carrier in the presence of the calcium compound, and collecting a gaseous and liquid product from the product stream.
Owner:IVANHOE HTL GASOLINEEUM

Thin film photovoltaic structure

Photovoltaic devices include an insulator structure bonded to an exfoliation layer, preferably of a substantially single-crystal donor semiconductor wafer, and at least one photovoltaic device layer, such as a conductive layer. In a preferred embodiment, a device may include a conductive layer adjacent to the insulator substrate and integral to the exfoliation layer, near the side that faces the insulator substrate, such as between the insulator substrate and the exfoliation layer. In a further preferred embodiment, a device may include a plurality of photovoltaic device layers distal to the insulator substrate and in or on the exfoliation layer, preferably having been epitaxially grown on the exfoliation layer after the exfoliation layer has been anodically bonded to the insulator substrate by means of electrolysis.
Owner:CORNING INC

Modified thermal processing of heavy hydrocarbon feedstocks

The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. It utilizes a short residence-time pyrolytic reactor operating under conditions that result in a rapid pyrolytic distillation with coke formation. Both physical and chemical changes taking place lead to an overall molecular weight reduction in the liquid product and rejection of certain components with the byproduct coke. The liquid product is upgraded primarily because of its substantially reduced viscosity, increased API gravity, and the content of middle and light distillate fractions. While maximizing the overall liquid yield, the improvements in viscosity and API gravity can render the liquid product suitable for pipelining without the use of diluents. This invention particularly relates to reducing sulfur emissions during the combustion of byproduct coke (or coke and gas) and to reducing the total acid number (TAN) of the liquid product. The method comprises introducing a particulate heat carrier into an up-flow reactor, introducing the feedstock at a location above the entry of the particulate heat carrier, allowing the heavy hydrocarbon feedstock to interact with the heat carrier for a short time, separating the vapors of the product stream from the particulate heat carrier and liquid and byproduct solid matter, regenerating the particulate heat carrier in the presence of the calcium compound, and collecting a gaseous and liquid product from the product stream.
Owner:IVANHOE HTL GASOLINEEUM

Integration process for fabricating stressed transistor structure

ActiveUS20060270217A1Enhance radiation curing efficiencyFilm stress is increasedSemiconductor/solid-state device manufacturingChemical vapor deposition coatingDevice materialEngineering
A process flow integration scheme employs one or more techniques to control stress in a semiconductor device formed thereby. In accordance with one embodiment, cumulative stress contributed by RTP of a nitride spacer and polysilicon gate, and subsequent deposition of a high stress etch stop layer, enhance strain and improve device performance. Germanium may be deposited or implanted into the gate structure in order to facilitate stress control.
Owner:APPLIED MATERIALS INC

Methods and apparatuses for rapid thermal processing of carbonaceous material

Embodiments of methods and apparatuses for rapid thermal processing of carbonaceous material are provided herein. The method comprises the step of contacting a carbonaceous feedstock with heated inorganic heat carrier particles at reaction conditions effective to rapidly pyrolyze the carbonaceous feedstock to form a product stream comprising pygas, pyrolysis oil, and solids. The solids comprise char and cooled inorganic heat carrier particles. The reaction conditions include a reactor pressure of about 70 kPa gauge or greater.
Owner:ENSYN RENEWABLES

Method and apparatus for rapid thermal processing and bonding of materials using RF and microwaves

A method and apparatus for rapid and selective heating of materials using variable frequency RF and microwaves. The apparatus uses variable frequency solid state electronics as a microwave power source, a novel microwave heating head to couple microwave energy to the target materials and a match-up network to tune the frequency and impedance match between the microwave source and the load. An electronic and computer measurement and control system is employed to monitor and control the microwave heating process. The method teaches the use of inductive microwave coupling for thin conductive materials such as metal film and impurity doped silicon wafers. The method also teaches the use of capacitive microwave coupling for dielectric material such as glass and ceramics. The method further teaches the use of rapid and selective heating of heterostructure for bonding and sealing of mems and integrated circuits. The method and apparatus can provide ultra-high heating speed along with ultra-high heating temperatures for rapid thermal processing of semiconductors and other materials. It also allows the use of bonding materials with high melting temperature for strong bonding and sealing of mems and IC devices. The apparatus further provides for high interconnection density of integrated circuits as connections are made without the use of solder bumps.
Owner:TIAN YONGLAI +1

Processes and systems for producing heat for rapid thermal processing of carbonaceous material

Embodiments of processes and systems for producing heat for rapid thermal processing of carbonaceous material are provided. The process comprises the steps of contacting bubbles of an oxygen containing gas advancing through a fluidized bubbling bed with a grating to form smaller bubbles. The fluidized bubbling bed is contained in a reheater and comprises inorganic heat carrier particles and char. The reheater is operating at combustion conditions effective to burn the char into ash and heat the inorganic heat carrier particles to form heated inorganic particles. The heated inorganic particles are advanced to a reactor.
Owner:ENSYN RENEWABLES

Biofuel compositions and methods based on co-processing aromatic-rich and aromatic-lean components

Biofuel compositions obtained by the simultaneous hydroprocessing of at least two distinct hydroprocessing feedstocks, either or both of which are derived from biomass, are disclosed. The co-processing of these feedstocks can result in an upgraded product having suitable characteristics, in terms of composition (e.g., quantities of compounds such as aromatic hydrocarbons, present in relatively large amounts) and in terms of quality (e.g., quantities of compounds such as oxygenates, present in relatively small amounts) for use as a hydroprocessed biofuel such as hydroprocessed aviation biofuel.
Owner:UOP LLC

Pulse thermal processing of functional materials using directed plasma arc

A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.
Owner:UT BATTELLE LLC

Method Of Manufacturing Soi Wafer And Thus-Manufactured Soi Wafer

A method of manufacturing an SOI wafer includes a bonding step, a thinning and a bonding annealing step. Assuming refractive index n1 of SiO2 as 1.5, refractive index n2 of Si as 3.5, and optical thickness tOP of the silicon oxide film 2 and the SOI layer 15 in the infrared wavelength region as tOP=n1×t1+n2×t2, the thickness t1 of the silicon oxide film 2 and thickness t2 of the SOI layer so as to satisfy a relation of 0.1λ<tOP<2λ, and so as to make (t1×n1) / (t2×n2) fall within 0.2 to 3. By nuclei killer annealing carried out before the bonding annealing, density of formation of oxygen precipitate in the base wafer after the bonding annealing is adjusted to less than 1×109 / cm3. This configuration successfully provides a method of manufacturing the SOI wafer having the thin silicon oxide film and the SOI layer, and being less likely to cause warping.
Owner:SHIN-ETSU HANDOTAI CO LTD

Process for preparation of absorption layer of solar cell

Provided is a process for preparing an absorption layer of a solar cell composed of a 1B-3A-Se compound, comprising applying a metal selenide nanoparticle as a precursor material to a base material and subjecting the applied nanoparticle to thermal processing, whereby the crystal size of the 1B-3A-Se compound can be increased as compared to a conventional method using a metal in the form of an oxide as a precursor material, consequently resulting in an enhanced efficiency of the solar cell, and the manufacturing process can be simplified with omission of hydrogen reduction and selenidation processes.
Owner:LG CHEM LTD

Integration of rare-earth doped amplifiers into semiconductor structures and uses of same

An integrated device is disclosed which has a substrate and a Rare-Earth Doped Semiconductor layer (REDS layer) integrated with the substrate. The REDS layer is patterned to define one or more optically amplifying structures each having a first I / O port for receiving or outputting a first optical signal, and at least one pump energy receiving port for receiving pumping energy in the form of at least one of electrical pump energy and / or optical pump energy. In one particular set of embodiments, at least one of the optical amplifying structures is a Raman type amplifier where a corresponding pump energy receiving port is structured for receiving Raman type pumping energy having an effective frequency which is about one optical phonon frequency higher than a signal frequency of an optical signal supplied at a corresponding I / O port. Methods are disclosed for fabricating Rare-Earth Doped Semiconductor layers, including providing such layers in semiconductor-on-insulator (SOI) structures and for enhancing the effective, long-term concentrations of incorporated, rare earth atoms. Additionally, non-parallel pumping techniques are disclosed.
Owner:TANG YIN S

Complementary metal-oxide-semiconductor image sensor and method for fabricating the same

ActiveUS20060192250A1Rapid thermal annealing processRapid heat treatmentTransistorTelevision system detailsCMOSEngineering
A complementary metal-oxide-semiconductor (CMOS) image sensor and a method for fabricating the same are provided. The CMOS image sensor includes: a pixel region provided with a plurality of unit pixels, each including a buried photodiode and a floating diffusion region; and a logic region provided with CMOS devices for processing data outputted from the unit pixels, wherein a self-aligned silicide layer is formed on gate electrodes and source / drain regions of the CMOS devices in the logic region while a self-aligned silicide blocking layer is formed over the pixel region.
Owner:INTELLECTUAL VENTURES II

Products produced from rapid thermal processing of heavy hydrocarbon feedstocks

The present invention is directed to the upgrading of heavy hydrocarbon feedstock that utilizes a short residence pyrolytic reactor operating under conditions that cracks and chemically upgrades the feedstock. The process of the present invention provides for the preparation of a partially upgraded feedstock exhibiting reduced viscosity and increased API gravity. This process selectively removes metals, salts, water and nitrogen from the feedstock, while at the same time maximizes the yield of the liquid product, and minimizes coke and gas production. Furthermore, this process reduces the viscosity of the feedstock in order to permit pipeline transport, if desired, of the upgraded feedstock with little or no addition of diluents. The method for upgrading a heavy hydrocarbon feedstock comprises introducing a particulate heat carrier into an upflow reactor, introducing the heavy hydrocarbon feedstock into the upflow reactor at a location above that of the particulate heat carrier so that a loading ratio of the particulate heat carrier to feedstock is from about 15:1 to about 200:1, allowing the heavy hydrocarbon feedstock to interact with the heat carrier with a residence time of less than about 1 second, to produce a product stream, separating the product stream from the particulate heat carrier, regenerating the particulate heat carrier, and collecting a gaseous and liquid product from the product stream. This invention also pertains to the products produced by the method.
Owner:IVANHOE HTL GASOLINEEUM

Integration process for fabricating stressed transistor structure

A process flow integration scheme employs one or more techniques to control stress in a semiconductor device formed thereby. In accordance with one embodiment, cumulative stress contributed by RTP of a nitride spacer and polysilicon gate, and subsequent deposition of a high stress etch stop layer, enhance strain and improve device performance. Germanium may be deposited or implanted into the gate structure in order to facilitate stress control.
Owner:APPLIED MATERIALS INC

Method of forming a metal silicide layer on non-planar-topography polysilicon

A process is described for creating a uniformly thick layer of titanium, cobalt, or nickel silicide over a layer of polysilicon that has features or a non-planar topography. A dual layer of metal is deposited onto patterned polysilicon such that the first layer covers the bottoms and tops of the non-planar topography and the second layer covers the sidewalls and tops of the non-planar topography. By heating the metal, etching away any un-reacted metal, and heating the result a second time, a metal silicide layer of uniform thickness, reduced stress and reduced resistivity is formed.
Owner:MACRONIX INT CO LTD

Pulse thermal processing of functional materials using directed plasma arc

A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.
Owner:UT BATTELLE LLC

Composite Materials And Method Of Its Manufacture

A novel solution route has been developed that after heat-treatment to 500-600° C. under inert atmosphere, yields highly porous composites of nano-sized metal (Ni) particle inclusions in ceramics (Al2O3). Metal loadings could be made from <1% to >95% Ni. The metal inclusion sizes in the Ni-Al2O3 system with the 10 atom % Ni sample were 4-7 nm, while for the 75 atom % Ni sample they were 5-8 nm. It was shown that the 10 atom % Ni sample could be used as a catalyst for the conversion of CO2 and CH4 in the temperature range 550-700° C., while higher temperatures led to growth of the Ni particles and carbon poisoning over time. The solution routes could also be deposited as thin dense films containing <10 nm Ni particles. Such films with high Ni-particle loadings deposited on aluminium substrates have shown very good solar heat absorber proficiency and provide good substrates for carbon tube growth.
Owner:SUNSTRIP

Composite of metal oxide nanoparticles and carbon, method of production thereof, electrode and electrochemical element employing said composite

A composite powder in which highly dispersed metal oxide nanoparticle precursors are supported on carbon is rapidly heated under nitrogen atmosphere, crystallization of metal oxide is allowed to progress, and highly dispersed metal oxide nanoparticles are supported by carbon. The metal oxide nanoparticle precursors and carbon nanoparticles supporting said precursors are prepared by a mechanochemical reaction that applies sheer stress and centrifugal force to a reactant in a rotating reactor. The rapid heating treatment in said nitrogen atmosphere is desirably heating to 400° C.-1000° C. By further crushing the heated composite, its aggregation is eliminated and the dispersity of metal oxide nanoparticles is made more uniform. Examples of a metal oxide that can be used are manganese oxide, lithium iron phosphate, and lithium titanate. Carbons that can be used are carbon nanofiber and Ketjen Black.
Owner:NIPPON CHIMI CON CORP

Semiconductor Device and Manufacturing Method Thereof

A high voltage semiconductor deice and a manufacturing method thereof are provided. The high voltage semiconductor device comprises: second conductive type drift regions disposed spaced from each other on a first conductive type well region formed on a first conductive type semiconductor substrate; a gate electrode on a channel region between the second conductive type drift regions with a gate insulating film disposed therebetween; second conductive type high-concentration source and drain each disposed in the second conductive type drift regions, spaced from a side of a gate electrode; a gate spacer having a spacer part covering the side of the gate electrode and a spacer extending part to cover a spaced portion of the second conductive type high-concentration source and drain from the side of the gate electrode; and a silicide formed on the gate electrode and the second conductive type high-concentration source and drain.
Owner:DONGBU HITEK CO LTD

Aroma-producing compositions for foods

InactiveUS20050287286A1Rapid heat-controlled release of aromaQuick releaseDough treatmentFood shapingControl releaseTriglyceride
An improved aroma-producing composition is provided that is shelf-stable and allows controlled release of a desired aroma from the composition, and also food products treated with the aroma-producing composition. The aroma-producing composition is a homogenous one-phase system which includes an aroma-producing material and a fat-containing composition which includes a medium chain fatty acid triglyceride and fat or lipid having a melting point greater than the medium chain fatty acid triglyceride. The aroma-producing composition can be heated to induce and boost aroma release from the aroma-producing composition at an opportune time, such as when a food product treated with the aroma-producing composition is preheated by microwave heating immediately before it is consumed.
Owner:INTERCONTINENTAL GREAT BRANDS LLC

CdTe deposition process for solar cells

An inexpensive system is provided for manufacturing a CdTe solar cell in a single pass using sputtering without the need for a wet process and without the need for high temperature gas diffusion. Thus, toxic gases and wet chemical baths are advantageously eliminated. A halogen gas, such as chlorine, and oxygen are added during the sputtering of a CdTe film, so that a wet process is eliminated and the deposited CdTe film can be annealed rapidly, such as by a rapid thermal anneal process (RTA).
Owner:SURYA POWER

Microwave hybrid and plasma rapid thermal processing of semiconductor wafers

Microwave energy is used as a radiation source for rapid thermal processing of semiconductor wafers. In one aspect, a hybrid material formed from a microwave modulator material is used to provide temperature uniformity across the wafer and to avoid cracking or breaking of wafers due to the development of thermal stresses. In another aspect, microwave-generated atmospheric pressure plasma is used to heat the wafer either directly or indirectly.
Owner:BTU INTERNATIONAL

Composite metallization process for filling high aspect ratio contact holes

A process has been developed in which high aspect ratio contact holes can be successfully filled, without voids, using a composite metallization layer. After adhesive and barrier layers are deposited, an additional titanium adhesive layer is deposited, for purposes of improving the adhesion of subsequent, overlying metallizations to underlying device structures. A two step aluminum deposition process is then employed, using an initial cold deposition followed by a hot aluminum deposition. The hot aluminum deposition process results in complete filling of the high aspect ratio contact hole, and also allows the formation of a titanium-aluminum intermetallic layer at the interface of the titanium adhesive layer and the initial, cold aluminum deposition layer.
Owner:YANG CHI CHENG +1

Products produced from rapid thermal processing of heavy hydrocarbon feedstocks

The present invention is directed to the upgrading of heavy hydrocarbon feedstock that utilizes a short residence pyrolytic reactor operating under conditions that cracks and chemically upgrades the feedstock. The process of the present invention provides for the preparation of a partially upgraded feedstock exhibiting reduced viscosity and increased API gravity. This process selectively removes metals, salts, water and nitrogen from the feedstock, while at the same time maximizes the yield of the liquid product, and minimizes coke and gas production. Furthermore, this process reduces the viscosity of the feedstock in order to permit pipeline transport, if desired, of the upgraded feedstock with little or no addition of diluents. The method for upgrading a heavy hydrocarbon feedstock comprises introducing a particulate heat carrier into an upflow reactor, introducing the heavy hydrocarbon feedstock into the upflow reactor at a location above that of the particulate heat carrier so that a loading ratio of the particulate heat carrier to feedstock is from about 15:1 to about 200:1, allowing the heavy hydrocarbon feedstock to interact with the heat carrier with a residence time of less than about 1 second, to produce a product stream, separating the product stream from the particulate heat carrier, regenerating the particulate heat carrier, and collecting a gaseous and liquid product from the product stream. This invention also pertains to the products produced by the method.
Owner:IVANHOE HTL GASOLINEEUM

Pulse Forming Network And Pulse Generator

A pulse forming network is disclosed. The device comprising two pulse forming networks (40), a first pulse forming network comprising n sections, n being an integer, and a second pulse forming network comprising m sections, m being an integer, each of the sections of the first and the second pulse forming networks comprising at least one capacitor and at least one inductor, and each pulse forming network having one output port for connecting a load, the two pulse forming networks electrically connected and magnetically coupled back to back. A method and device for extinguishing an electrical pulse generated by a pulse generator is also disclosed (SWo).
Owner:T SQUARED THERMAL TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products