Patents
Literature

143results about How to "Excellent property" patented technology

Optoelectronic device comprising perovskites

The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device. The invention additionally provides the use of a layer comprising the porous material as a photoactive layer in an optoelectronic device. Further provided is a photoactive layer for an optoelectronic device, which photoactive layer comprises the porous material.
Owner:OXFORD UNIV INNOVATION LTD

Conductive Material For Connecting Part And Method For Manufacturing The Conductive Material

There is provided a conductive material comprising a base material made up of a Cu strip, a Cu—Sn alloy covering layer formed over a surface of the base material, containing Cu in a range of 20 to 70 at.%, and having an average thickness in a range of 0.1 to 3.0 μm, and an Sn covering layer formed over the Cu—Sn alloy covering layer having an average thickness in a range of 0.2 to 5.0 μm, disposed in that order, such that portions of the Cu—Sn alloy covering layer are exposed the surface of the Sn covering layer, and a ratio of an exposed area of the Cu—Sn alloy covering layer to the surface of the Sn covering layer is in a range of 3 to 75%. The surface of the conductive material is subjected to a reflow process and preferably, an arithmetic mean roughness Ra of the surface of the material in at least one direction, is not less than 0.15 μm while the arithmetic mean roughness Ra thereof, in all directions, is not more than 3.0 μm and the average thickness of the Cu—Sn alloy covering layer is preferably not less than 0.2 μm. The conductive material is fabricated by a method whereby the surface of the base material is subjected to roughening treatment, an Ni plating layer, a Cu plating layer and an Sn plating layer are formed, as necessary, over the surface of the base material, and subsequently, a reflow process is applied.
Owner:KOBE STEEL LTD

Lithium-containing composite oxide and its production method

To provide a lithium/nickel/cobalt/manganese-containing composite oxide powder which has a high weight capacity density, a high packing property, an excellent cycle property, an excellent discharge rate property and an excellent safety, and which has little content of free alkalis and is free from gelation at a time of producing a slurry.
A lithium/nickel/cobalt/manganese-containing composite oxide powder represented by the formula LipNixCoyMnzMqO2-aFa (wherein M is at least one element selected from the group consisting of Al, Ge, Sn, alkaline earth metal elements and transition metal elements other than Co, Mn and Ni, 0.9≦p≦1.1, 0.2≦x≦0.5, 0.2≦y≦0.5, 0.1≦z≦0.4, 0≦q≦0.05, 1.9≦2-a≦2.1, p+x+y+z+q=2, and 0≦a≦0.02), characterized in that when the powder is classified into small particle size-classified particles with an average particle size of 2 μm≦D50≦8 μm and large particle size-classified particles with an average particle size of 10 μm≦D50≦25 μm, the ratio of (% by weight of the small particle size-classified particles)/(% by weight of the large particle size-classified particles) is from 15/85 to 40/60, the molar ratio (ps) of lithium to the total of nickel, cobalt, manganese and the M element contained in the small particle size-classified particles is smaller than the molar ratio (pl) of lithium to the total of nickel, cobalt, manganese and the M element contained in the large particle size-classified particles.
Owner:SUMITOMO CHEM CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products